TWO-WAY AND THREE-WAY CONTROL VALVES LDM RV 113

Control valves RV 113 R are flanged, 2-way valves with pressure balanced plug (except DN 15-25) and high tightness designed for regulation and closing of the medium flow.

Its design enables the valve to be applicable at high differential pressures with low-linear-force actuators. Owing to unique flow characteristic LDMspline, optimized for regulation of thermodynamic processes, the valves are ideal for applications in heating and air-conditioning. Flow characteristics, Kvs values and leakage rates correspond to international standards.
The valves type RV 113 R have connection to the following actuators: Siemens, Belimo, Ekorex, LDM a PS Automation.

Application

Control valves RV113 are designed for applications in heating and airconditioning. Control valves type RV113 are also available in silicone free execution (marking in a specification number SF). The maximum permissible operating pressures are specified below on this page.

Process media

The valves RV113 are suitable for media such as water, air and other media compatible with material of body and internal parts in range +2 to $+150^{\circ} \mathrm{C}$.
Sealing surfaces of trim are resistant to common dirt and impurities in medium. However, for abrasive impurities it is recommended to pipe a strainer before the valve to ensure reliable function.
The valve cannot work in cavitation conditions.

Installation

The valve must be piped with the medium flow according to arrows indicated on the valve body.
The valve can be piped in any position except when the actuator is under the valve body.

Flow characteristic selection in regard of valve stroke

To make right selection of valve flow characteristic, it is suitable to carry out checking of what stroke values will be reached in different operation states. We recommend to carry out such checking at least for minimal, nominal and maximal flow rates. The principle for flow characteristic selection is to avoid, if possible, $5,10 \%$ of the beginning and end of the valve stroke range.
To calculate valve stroke at different operating conditions with different types of flow characteristics is possible with the advantage of using LDM's calculation programme VALVES. The programme serves for complete design of valve from Kv calculation to specification of a concrete valve with its actuator.

Packing O-ring EPDM

Well proven type of packing with sealing elements made of high quality EPDM is suitable for operating with temperature of, +2 to +150 C. The packing excels with its reliability and long time tightness. Its properties ensure safe usage in nomaintanance applications. Main preferences of the packing is low frictional forces, sealing capability in both ports (even when there is underpressure in the valve) and service life exceeding 500000 cycles.

RV 113 R

Two-way control valves

DN 15-40, PN 6
DN 15-150, PN 16
DN 15-150, PN 25

Technical data		
Series	RV 113 R	
Type of valve	Two-way control valve	
Nominal size range	DN 15 to 150	
Nominal pressure	DN 15-40, PN 6; DN 15-150, PN 16	DN 15-150, PN 25
Body material	Grey cast iron EN-JL 1040	Spheroidal cast iron EN-JS 1025
Plug material	Stainless steel 1.4027 (1.4028)	
Stem material	Stainless steel 1.4305	
Seat sealing	EPDM	
Packing	EPDM	
Operating temperature range	+2 to $+150^{\circ} \mathrm{C}$	
Connection	Flanges type B1 (raised-faced) Acc. to ČSN-EN 1092-2 (1/1999)	
Face to face dimensions	Section 1 acc. to ČSN-EN $558+$ A1 (5/2012)	
Type of plug	V-ported with soft seat sealing	
Flow characteristic	LDMspline ${ }^{\circ}$	
Kvs values	0,63 to $360 \mathrm{~m}^{3} / \mathrm{h}$	
Leakage rate	Class IV. - S1 acc. to ČSN-EN 1349 (5/2001) (<0.0005 \% Kvs)	
Rangeability r	50:1	

Maximum permissible operating pressures [MPa] dle ČSN EN 1092-2

Material	PN	Temperature [$\left.{ }^{\circ} \mathbf{C}\right]$	
Grey cast iron EN-JL 1040	$\mathbf{6}$	0,60	0,54
(EN-GJL-250)	$\mathbf{1 6}$	1,60	1,44
Spheroidal cast iron EN-JS (EN-GJS-400-18-LT)	$\mathbf{2 5}$	2,50	2,43

Kvs values and differential pressures

The value $\Delta \mathbf{p}_{\text {max }}$ is maximum differential pressure when reliable closing and opening is guaranteed. Because of the seat and plug service life, it is recommended so that permanent differential pressure would not exceed 0.4 MPa.

For further info on actuating see actuators' catalogue sheets		Actuating (actuator)					see the table on next page							
		Linear force					800 N	1000 N	1500 N	2000 N	2500 N	3200 N	4000 N	4500 N
		Kvs [$\mathrm{m}^{3} / \mathrm{h}$]					$\Delta \mathrm{p}_{\text {max }}$	$\Delta p_{\text {max }}$	$\Delta \mathrm{p}_{\text {max }}$	$\Delta \mathrm{p}_{\text {max }}$				
DN	H	1	2	3	4	5	MPa							
15	20	4	2.5	1.6	1	0.63	2.28	2.50	2.50	2.50	2.50	---	---	---
20		6.3	4.0	2.5	---	---	1.43	1.96	2.50	2.50	2.50	---	---	---
25		10	6.3	4.0	---	---	0.91	1.25	2.11	2.50	2.50	---	---	---
32		16	10	6.3	---	---	2.50	2.50	2.50	2.50	2.50	---	---	---
40		25	16	10	---	---	2.50	2.50	2.50	2.50	2.50	---	---	---
50		40	25	16	---	---	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
65		63	40	25	---	---	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
80		100	63	40	---	---	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50
100	40	160	100	63	---	---	---	---	---	2.50	2.50	2.50	2.50	2.50
125		250	160	100	---	---	---	---	---	2.50	2.50	2.50	2.50	2.50
150		360	250	160	---	---	---	---	---	2.50	2.50	2.50	2.50	2.50

Supplied types of actuators

			stroke
Siemens	Electric actuator SAX 31.00 a SAX $\mathbf{3 1 . 0 3}$	AC $230 \mathrm{~V}, 3$-position control, 800 N	20 mm
	Electric actuator SAX 81.00 a SAX 81.03	AC/DC $24 \mathrm{~V}, 3$-position control, 800 N	
	Electric actuator SAX 61.03	AC/DC 24 V , control $0 \ldots 10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}, 0-1000 \Omega, 800 \mathrm{~N}$	
Belimo	Electric actuator NV230A-RE	AC $230 \mathrm{~V}, 3$-position control, 1000 N	20 mm
	Electric actuator NV24A-RE	AC/DC 24 V , 3-position control, 1000 N	
	Electric actuator NV24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1000 \mathrm{~N}$	
	Electric actuator NVC24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1000 \mathrm{~N}$	
	Electric actuator NVK24A-3-RE	AC/DC $24 \mathrm{~V}, 3$-position control, 1000 N	
	Electric actuator NVK24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1000 \mathrm{~N}$	
	Electric actuator NVK230A-3-RE	AC $230 \mathrm{~V}, 3$-position control, 1000 N	
	Electric actuator NVKC24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1000 \mathrm{~N}$	
	Electric actuator SV24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1500 \mathrm{~N}$	
	Electric actuator SV230A-RE	AC $230 \mathrm{~V}, 3$-position control, 1500 N	
	Electric actuator SV24A-RE	AC/DC $24 \mathrm{~V}, 3$-position control, 1500 N	
	Electric actuator SVC24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1500 \mathrm{~N}$	
	Electric actuator EV230A-RE	AC $230 \mathrm{~V}, 3$-position control, 2500 N	
	Electric actuator EV24A-RE	AC/DC 24 V , 3-position control, 2500 N	40 mm
	Electric actuator EV24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots .10 \mathrm{~V}, 2500 \mathrm{~N}$	
	Electric actuator EVC24A-MF-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 2500 \mathrm{~N}$	
	Electric actuator RV24A-MF-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 4500 \mathrm{~N}$	
Ekorex	Electric actuator PTN2-XX.0	AC $230 \mathrm{~V}, 3$-position control, $0 \ldots 10 \mathrm{~V}, 4 \ldots 2 \mathrm{~mA}$, $2000-4000 \mathrm{~N}$	20-40 mm
	Electric actuator PTN2-XX. 2	AC $24 \mathrm{~V}, 3$-position control, $0 . . .10 \mathrm{~V}, 4 . .20 \mathrm{~mA}$ 2000-4000 N	
LDM	Electric actuator ANT40.11	AC/DC $24 \mathrm{~V}(230 \mathrm{~V}$ with modul), 2500 N 3(2)-position control, $0 \ldots 10 \mathrm{~V}, 4 \ldots 2 \mathrm{~mA}$	20-40 mm
	Electric actuator ANT40.11S	AC/DC $24 \mathrm{~V}(230 \mathrm{~V}$ s modulem), 2000 N 3(2)-position control, $0 \ldots .10 \mathrm{~V}, 4 . . .20 \mathrm{~mA}$ fail-safe function - indirect	
	Elektrický pohon ANT40.11R	AC/DC 24 V (230 V s modulem), 2000 N 3(2)-position control, $0 . . .10 \mathrm{~V}, 4 \ldots 2 \mathrm{~mA}$ fail-safe function - direct	
PS Automation	Electric actuator PSL202 AMS11	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 2300 \mathrm{~N}$ 3-position control, 0 (2)-10 V ; 0(4)-20 mA	20-40 mm
	Electric actuator PSL204 AMS11	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 4500 \mathrm{~N}$ 3-position control, 0(2)-10 V; 0(4)-20 mA	40 mm
	Electric actuator PSL204 AMS12	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 4500 \mathrm{~N}$ 3-position control, 0(2)-10 V; 0(4)-20 mA	
	Electric actuator PSF401 (mechanical fail-safe function)	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 1000 \mathrm{~N} \\ & \text { 3-position control, } 0(2)-10 \mathrm{~V} ; 0(4)-20 \mathrm{~mA} \end{aligned}$	20 mm
	Electric actuator PSF402 (mechanical fail-safe function)	AC 230 V, AC/DC $24 \mathrm{~V}, 2000 \mathrm{~N}$ 3-position control, 0(2)-10 V; 0(4)-20 mA	20-40 mm
	Electric actuator PSF402.1 (mechanical fail-safe function)	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 2000 \mathrm{~N}$ 3-position control, 0(2)-10 V; 0(4)-20 mA	
	Electric actuator PSF-M402 (hand wheel)	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 2000 \mathrm{~N}$ 3-position control, 0 (2)-10 V; 0(4)-20 mA	

Dimensions and weights for the type RV 113 R

DN	PN 6							PN 16						
	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{n} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{n} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} a \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$
15	80	55	38	11	4	12	2.6	95	65	46	14	4	14	3.5
20	90	65	48	11	4	14	3.5	105	75	56	14	4	16	4.6
25	100	75	58	11	4	14	4.1	115	85	65	14	4	16	5.4
32	120	90	69	14	4	16	6.3	140	100	76	19	4	18	8.5
40	130	100	78	14	4	16	7.9	150	110	84	19	4	18	10.5
50								165	125	99	19	4	20	16.7
65								185	145	118	19	4	20	23.0
80								200	160	132	19	8	22	29.5
100								220	180	156	19	8	24	40.5
125								250	210	184	19	8	26	58.8
150								285	240	211	23	8	26	80.7

DN	PN 25							PN 6, PN 16, PN 25						
	D_{1} [mm]	$\begin{gathered} D_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	D_{3} [mm]	d [mm]	$\begin{gathered} \mathrm{n} \\ {[\mathrm{~mm}]} \end{gathered}$	a [mm]	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$	D_{4} [mm]	$\begin{gathered} \mathbf{f} \\ {[\mathbf{m m}]} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} V_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} V_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	H [mm]
15	95	65	46	14	4	14	3.5	44	2	130	167	65	96	20
20	105	75	56	14	4	16	4.6	44	2	150	167	75	96	20
25	115	85	65	14	4	16	5.4	44	3	160	167	80	96	20
32	140	100	76	19	4	18	8.5	44	3	180	177	90	96	20
40	150	110	84	19	4	19	10.5	44	3	200	187	100	96	20
50	165	125	99	19	4	19	16.7	44	3	230	182	155	96	20
65	185	145	118	19	8	19	23.0	44	3	290	192	185	96	20
80	200	160	132	19	8	19	29.5	44	3	310	212	193	96	20
100	235	190	156	23	8	19	39.8	44	3	350	247	216	116	40
125	270	220	184	28	8	19	56.4	44	3	400	272	239	116	40
150	300	250	211	28	8	20	78.1	44	3	480	297	284	116	40

DN 15-40

DN 50-150

DN 15-40, PN 6
DN 15-150, PN 16
DN 15-150, PN 25

Series	RV 113 M	
Type of valve	Three-way control valve	
Nominal size range	DN 15 to 150	
Nominal pressure	DN 15-40, PN 6; DN 15-150, PN 16	DN 15-150, PN 25
Body material	Grey cast iron EN-JL 1040	Spheroidal cast iron EN-JS 1025
Plug material	Stainless steel 1.4027 (1.4028)	
Stem material	Stainless steel 1.4305	
Seat sealing	EPDM	
Packing	EPDM	
Operating temperature range	+2 to $+150^{\circ} \mathrm{C}$	
Connection	Flanges type B1 (raised-faced) Acc. to ČSN-EN 1092-2 (4/2002)	
Face to face dimensions	Section 1 acc. to ČSN-EN 558 (9/2008)	
Type of plug	Flanges type B1 (raised-faced), linear in angle way	
Flow characteristic	LDMspline ${ }^{\circ}$	
Kvs values	0,63 to $360 \mathrm{~m}^{3} / \mathrm{h}$	
Leakage rate	Class IV. - S1 acc. to ČSN-EN 1349 (5/2001) (<0.0005 \% Kvs)	
Leakage rate in angle way	not guaranteed (<2\% Kvs)	
Rangeability r	50:1	

Maximum permissible operating pressures [MPa] acc. to ČSN EN 1092-2

Material	PN	Temperatures $\left[{ }^{\circ} \mathbf{C}\right]$	
Grey cast iron EN-JL 1040	$\mathbf{6}$	0,60	0,54
(EN-GJL-250)	$\mathbf{1 6}$	1,60	1,44
Spheroidal EN-JS 1025 (EN-GJS-400-18-LT)	$\mathbf{2 5}$	2,50	2,43

Kvs values and differential pressures

The value $\Delta \mathbf{p}_{\text {max }}$ is maximum differential pressure when reliable closing and opening is guaranteed. Because of the seat and plug service life, it is recommended so that permanent differential pressure would not exceed 0.4 MPa (Grey cast iron) respective 0.6 Mpa (Spheroidal cast iron).

For further info. on actuating see actuators' catalogue sheets		Actuating (actuator) Linear force					see the table on next page								
		800 N	1000 N	1500 N	2000 N	2300 N	2500 N	3200 N	4000 N	4500 N					
		Kvs [$\mathrm{m}^{3} / \mathrm{h}$]	$\Delta \mathrm{p}_{\text {max }}$	$\Delta p_{\text {max }}$	$\Delta \mathrm{p}_{\text {max }}$	$\Delta p_{\text {max }}$	$\Delta \mathrm{p}_{\text {max }}$	$\Delta \mathrm{p}_{\text {max }}$							
DN	H						1	2	3	4	5	MPa			
15	20	4	2.5	1.6	1	0.63	2.28	2.50	2.50	2.50	2.50	2.50	---	---	---
20		6.3	4.0	2.5	---	---	1.43	1.96	2.50	2.50	2.50	2.50	---	---	---
25		10	6.3	4.0	---	---	0.91	1.25	2.11	2.50	2.50	2.50	---	---	---
32		16	10	6.3	---	---	0.56	0.77	1.30	1.83	2.15	2.37	---	---	---
40		25	16	10	---	---	0.36	0.49	0.84	1.19	1.40	1.54	---	---	---
50		40	25	16	---	---	0.17	0.25	0.47	0.68	0.81	0.89	1.19	1.53	1.74
65		63	40	25	---	---	0.10	0.15	0.28	0.41	0.49	0.54	0.72	0.93	1.06
80		100	63	40	---	---	0.06	0.10	0.19	0.28	0.33	0.36	0.49	0.63	0.71
100		160	100	63	---	---	---	---	--	0.14	0.17	0.19	0.28	0.37	0.43
125	40	250	160	100	---	---	---	---	---	0.09	0.11	0.12	0.18	0.24	0.28
150		360	250	160	---	---	---	---	---	0.06	0.07	0.09	0.12	0.17	0.19

Supplied types of actuators

Siemens			stroke
	Electric actuator SAX 31.00 a SAX $\mathbf{3 1 . 0 3}$	AC $230 \mathrm{~V}, 3$-position control, 700 N	20 mm
	Electric actuator SAX 81.00 a SAX 81.03	AC/DC $24 \mathrm{~V}, 3-$ position control , 800 N	
	Electric actuator SAX 61.03	AC/DC $24 \mathrm{~V}, 3$-position control, $0 . .10 \mathrm{~V}, 4 . .20 \mathrm{~mA}, 0$ to $1000 \mathrm{Ohm}, 800 \mathrm{~N}$	
Belimo	Electric actuator NV230A-RE	AC $230 \mathrm{~V}, 3$-position control , 1000 N	20 mm
	Electric actuator NV24A-RE	AC/DC $24 \mathrm{~V}, 3$-position control , 1000 N	
	Electric actuator NV24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1000 \mathrm{~N}$	
	Electric actuator NVC24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1000 \mathrm{~N}$	
	Electric actuator NVK24A-3-RE	AC/DC $24 \mathrm{~V}, 3$-position control , 1000 N	
	Electric actuator NVK24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1000 \mathrm{~N}$	
	Electric actuator NVK230A-3-RE	AC $230 \mathrm{~V}, 3$-position control , 1000 N	
	Electric actuator NVKC24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1000 \mathrm{~N}$	
	Electric actuator SV24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1500 \mathrm{~N}$	
	Electric actuator SV230A-RE	AC $230 \mathrm{~V}, 3$-position control , 1500 N	
	Electric actuator SV24A-RE	AC/DC $24 \mathrm{~V}, 3$-position control , 1500 N	
	Electric actuator SVC24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 1500 \mathrm{~N}$	
	Electric actuator EV230A-RE	AC $230 \mathrm{~V}, 3$-position control , 2500 N	
	Electric actuator EV24A-RE	AC/DC $24 \mathrm{~V}, 3$-position control , 2500 N	40 mm
	Electric actuator EV24A-MP-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 2500 \mathrm{~N}$	
	Electric actuator EVC24A-MF-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 2500 \mathrm{~N}$	
	Electric actuator RV24A-MF-RE	AC/DC $24 \mathrm{~V}, \mathrm{DC}(0) 2 \ldots 10 \mathrm{~V}, 4500 \mathrm{~N}$	
Ekorex	Electric actuator PTN2-XX.0	AC 230 V , 3-position control, $0 \ldots 10 \mathrm{~V}, 4 \ldots 2 \mathrm{~mA}, 2000-4000 \mathrm{~N}$	20-40 mm
	Electric actuator PTN2-XX. $\mathbf{2}$	AC $24 \mathrm{~V}, 3$-position control, 0...10V, 4...20mA, 2000-4000 N	
LDM	Electric actuator ANT40.11	AC/DC 24 V (230 V with modul), 2500 N 3(2)-position control, $0 \ldots 10 \mathrm{~V}, 4 \ldots 2 \mathrm{~mA}$	20-40 mm
	Electric actuator ANT40.11S	AC/DC 24 V (230 V s modulem), 2000 N 3(2)-position control, $0 \ldots 10 \mathrm{~V}, 4 \ldots 2 \mathrm{~mA}$ fail-safe function - indirect	
	Electric actuator ANT40.11R	AC/DC 24 V (230 V s modulem), 2000 N 3(2)-position control, 0...10V, 4...20mA fail-safe function - direct	
PS Automation	Electric actuator PSL202 AMS11	AC 230 V , AC/DC $24 \mathrm{~V}, 2300 \mathrm{~N}$ 3-position control, 0(2)-10 V; 0(4)-20 mA	20-40 mm
	Electric actuator PSL204 AMS11	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 4500 \mathrm{~N}$ 3-position control, 0 (2)-10 V ; 0(4)-20 mA	40 mm
	Electric actuator PSL204 AMS12	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 4500 \mathrm{~N}$ 3-position control, 0 (2)-10 V; 0(4)-20 mA	
	Electric actuator PSF401 (fail-safe function)	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 1000 \mathrm{~N}$ 3-position control, 0(2)-10 V; 0(4)-20 mA	20 mm
	Electric actuator PSF402 (fail-safe function)	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 2000 \mathrm{~N}$ 3-position control, 0(2)-10 V; 0(4)-20 mA	20-40 mm
	Electric actuator PSF402.1 (fail-safe function)	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 2000 \mathrm{~N}$ 3-position control, 0(2)-10 V; 0(4)-20 mA	
	Electric actuator PSF-M402 (hand wheel)	AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, 2000 \mathrm{~N}$ 3-position control, 0(2)-10 V; 0(4)-20 mA	

Dimensions and weights for the type RV 113 M

DN	PN 6							PN 16						
	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	d [mm]	$\begin{gathered} \mathrm{n} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} a \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{n} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$
15	80	55	38	11	4	12	2.6	95	65	46	14	4	14	3.5
20	90	65	48	11	4	14	3.5	105	75	56	14	4	16	4.6
25	100	75	58	11	4	14	4.1	115	85	65	14	4	16	5.4
32	120	90	69	14	4	16	6.3	140	100	76	19	4	18	8.5
40	130	100	78	14	4	16	7.9	150	110	84	19	4	18	10.5
50								165	125	99	19	4	20	16.7
65								185	145	118	19	4	20	23.0
80								200	160	132	19	8	22	29.5
100								220	180	156	19	8	24	40.5
125								250	210	184	19	8	26	58.8
150								285	240	211	23	8	26	80.7

DN	PN 25							PN 6, PN 16, PN 25						
	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	d [mm]	$\begin{gathered} \mathrm{n} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{4} \\ {[\mathrm{~mm}]} \end{gathered}$	f [mm]	[mm]	$\begin{gathered} \mathrm{V} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{V}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{V}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	H [mm]
15	95	65	46	14	4	14	3.5	44	2	130	167	65	96	20
20	105	75	56	14	4	16	4.6	44	2	150	167	75	96	20
25	115	85	65	14	4	16	5.4	44	3	160	167	80	96	20
32	140	100	76	19	4	18	8.5	44	3	180	177	90	96	20
40	150	110	84	19	4	19	10.5	44	3	200	187	100	96	20
50	165	125	99	19	4	19	13.0	44	3	230	182	115	96	20
65	185	145	118	19	8	19	18.3	44	3	290	192	145	96	20
80	200	160	132	19	8	19	24.1	44	3	310	212	155	96	20
100	235	190	156	23	8	19	33.1	44	3	350	247	175	116	40
125	270	220	184	28	8	19	46.9	44	3	400	272	200	116	40
150	300	250	211	28	8	20	66.7	44	3	480	297	240	116	40

RV 113 L

Two-way control valves

DN 15-40, PN 6
DN 15-150, PN 16
DN 15-150, PN 25

Technical data		
Series	RV 113 L	
Type of valve	Two-way control valve	
Nominal size range	DN 15 to 150	
Nominal pressure	DN 15-40, PN 6; DN 15-150, PN 16	DN 15-150, PN 25
Body material	Grey cast iron EN-JL 1040	Spheroidal cast iron EN-JS 1025
Plug material	Stainless steel 1.4027 (1.4028)	
Stem material	Stainless steel 1.4305	
Seat sealing	EPDM	
Packing	EPDM	
Operating temperature range	+2 to $+150^{\circ} \mathrm{C}$	
Connection	Flanges type B1 (raised-faced) Acc. to ČSN-EN 1092-2 (1/1999)	
Face to face dimensions	Section 1 acc. to ČSN-EN $558+$ Al (5/2012)	
Type of plug	V-ported with soft seat sealing	
Flow characteristic	LDMspline ${ }^{\circ}$	
Kvs values	0,63 to $360 \mathrm{~m}^{3} / \mathrm{h}$	
Leakage rate	Class IV. - S1 acc. to ČSN-EN 1349 (5/2001) (<0.0005 \% Kvs)	
Rangeability r	50:1	

Maximum permissible operating pressures [MPa] acc. to ČSN EN 1092-2

Material	PN	Temperature $\left[{ }^{\circ} \mathbf{C}\right]$	
	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$	
Grey cast iron EN-JL $\mathbf{1 0 4 0}$ (EN-GJL-250)	$\mathbf{6}$	0,60	0,54
Spheroidal cast iron EN-JS (EN-GJS-400-18-LT)	$\mathbf{2 5}$	1,60	1,44

Kvs values and differential pressures

The value $\Delta \mathbf{p}_{\text {max }}$ is maximum differential pressure when reliable closing and opening is guaranteed. Because of the seat and plug service life, it is recommended so that permanent differential pressure would not exceed 0.4 MPa (Grey cast iron) respective 0.6 Mpa (Spheroidal cast iron).

For further info. on actuating see actuators' catalogue sheets		Actuating (actuator)					see the table below						
		1000 N	2800 N										
		Kvs [$\mathrm{m}^{3} / \mathrm{h}$]	$\Delta \mathrm{p}_{\text {max }}$	$\Delta p_{\text {max }}$									
DN	H						1	2	3	4	5		
15	20	4	2.5	1.6	1	0.63	2.50	---					
20		6.3	4.0	2.5	---	---	1.96	---					
25		10	6.3	4.0	---	---	1.25	2.50					
32		16	10	6.3	---	---	2.50	2.50					
40		25	16	10	---	---	2.50	2.50					
50		40	25	16	---	---	2.50	2.50					
65		63	40	25	---	---	2.50	2.50					
80		100	63	40	---	---	2.50	2.50					
100	40	160	100	63	---	---	---	2.50					
125		250	160	100	---	---	---	2.50					
150		360	250	160	---	---	---	2.50					

Supplied types of actuators

			stroke
Siemens	Electrohydraulic actuator SKD $\mathbf{3 2 . 5 0}$	AC 230 V , 3-position control, $120 \mathrm{~s}, 1000 \mathrm{~N}$	20 mm
	Electrohydraulic actuator SKD $\mathbf{8 2 . 5 0}$	AC $24 \mathrm{~V}, 3$-position control, $120 \mathrm{~s}, 1000 \mathrm{~N}$	
	Electrohydraulic actuator SKD $\mathbf{3 2 . 5 1}$	AC $230 \mathrm{~V}, 3$-position control, 120 s , fail-safe fct., 1000 N	
	Electrohydraulic actuator SKD $\mathbf{3 2 . 2 1}$	AC 230 V , 3-position control, 30 s , fail-safe funct., 1000 N	
	Electrohydraulic actuator SKD 82.51	AC $24 \mathrm{~V}, 3$-position control, fail-safe function, 1000 N	
	Electrohydraulic actuator SKD 60	AC 24 V , control $0 . . .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}, 0-1000 \Omega, 1000 \mathrm{~N}$	
	Electrohydraulic actuator SKD 62	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}, 0-1000 \Omega$, fail-safe fct., 1000 N	
	Electrohydraulic actuator SKD 62UA	AC 24 V , control $0 . . .10 \mathrm{~V}, 4 . .20 \mathrm{~mA}, 0-1000 \Omega$, fail-safe fct., 1000 N	
Siemens	Electrohydraulic actuator SKB $\mathbf{3 2 . 5 0}$	AC 230 V , 3-position control, $120 \mathrm{~s}, 2800 \mathrm{~N}$	20 mm
	Electrohydraulic actuator SKB $\mathbf{8 2 . 5 0}$	AC $24 \mathrm{~V}, 3$-position control, $120 \mathrm{~s}, 2800 \mathrm{~N}$	
	Electrohydraulic actuator SKB $\mathbf{3 2 . 5 1}$	AC $230 \mathrm{~V}, 3$-position control, 120 s , fail-safe fct., 2800 N	
	Electrohydraulic actuator SKB $\mathbf{8 2 . 5 1}$	AC 24 V , 3-position control, 120 s , fail-safe fct., 2800 N	
	Electrohydraulic actuator SKB 60	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}, 0-1000 \Omega, 2800 \mathrm{~N}$	
	Electrohydraulic actuator SKB 62	AC 24 V , conrol $0 . . .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$, fail-safe fct., 0-1000 $2,2800 \mathrm{~N}$	
	Electrohydraulic actuator SKB 62UA	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$, fail-safe fct., $0-1000 \Omega, 2800 \mathrm{~N}$	
Siemens	Electrohydraulic actuator SKC $\mathbf{3 2 . 5 0}$	AC 230 V , 3-position control, 120 s	40 mm
	Electrohydraulic actuator SKC $\mathbf{8 2 . 5 0}$	AC 24 V , 3-position control, 120 s	
	Electrohydraulic actuator SKC $\mathbf{3 2 . 5 1}$	AC 230 V , 3-position control, 120 s , fail-safe function	
	Electrohydraulic actuator SKC $\mathbf{8 2 . 5 1}$	AC 24 V , 3-position control, 120 s , fail-safe function	
	Electrohydraulic actuator SKC 60	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}, 0-1000 \Omega, 2800 \mathrm{~N}$	
	Electrohydraulic actuator SKC 62	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$, fail-safe function, $0-1000 \Omega, 2800 \mathrm{~N}$	
	Electrohydraulic actuator SKC 62UA	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$, fail-safe function, $0-1000 \Omega, 2800 \mathrm{~N}$	

Dimensions and weights for the type RV 113 L

DN	PN 6							PN 16						
	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{n} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{n} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} a \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$
15	80	55	38	11	4	12	2.6	95	65	46	14	4	14	3.5
20	90	65	48	11	4	14	3.5	105	75	56	14	4	16	4.6
25	100	75	58	11	4	14	4.1	115	85	65	14	4	16	5.4
32	120	90	69	14	4	16	6.3	140	100	76	19	4	18	8.5
40	130	100	78	14	4	16	7.9	150	110	84	19	4	18	10.5
50								165	125	99	19	4	20	16.7
65								185	145	118	19	4	20	23.0
80								200	160	132	19	8	22	29.5
100								220	180	156	19	8	24	40.5
125								250	210	184	19	8	26	58.8
150								285	240	211	23	8	26	80.7

DN	PN 25							PN 6, PN 16, PN 25						
	D_{1} [mm]	D_{2} [mm]	D_{3} [mm]	d [mm]	n [mm]	[mm]	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$	$\begin{gathered} D_{4} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{f} \\ {[\mathbf{m m}]} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{V}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{V}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	H [mm]
15	95	65	46	14	4	14	3.5	44	2	130	167	65	96	20
20	105	75	56	14	4	16	4.6	44	2	150	167	75	96	20
25	115	85	65	14	4	16	5.4	44	3	160	167	80	96	20
32	140	100	76	19	4	18	8.5	44	3	180	177	90	96	20
40	150	110	84	19	4	19	10.5	44	3	200	187	100	96	20
50	165	125	99	19	4	19	16.7	44	3	230	182	155	96	20
65	185	145	118	19	8	19	23.0	44	3	290	192	185	96	20
80	200	160	132	19	8	19	29.5	44	3	310	212	193	96	20
100	235	190	156	23	8	19	39.8	44	3	350	247	216	116	40
125	270	220	184	28	8	19	56.4	44	3	400	272	239	116	40
150	300	250	211	28	8	20	78.1	44	3	480	297	284	116	40

DN 15-40

DN 50-150

RV 113 S

Three-way contol valves

DN 15-40, PN 6
DN 15-150, PN 16
DN 15-150, PN 25

Technical data		
Series	RV 113 S	
Type of valve	Three-way control valve	
Nominal size range	DN 15 to 150	
Nominal pressure	DN 15-40, PN 6; DN 15-150, PN 16	DN 15-150, PN 25
Body material	Grey cast iron EN-JL 1040	Speroidal cast iron EN-JS 1025
Plug material	Stainless steel1.4027 (1.4028)	
Stem material	Stailnless steel 1.4305	
Seat sealing	EPDM	
Packing	EPDM	
Operating temperature range	+2 to $+150^{\circ} \mathrm{C}$	
Connection	Flange type B1 (raised-faced) Acc. to ČSN-EN 1092-2 (4/2002)	
Face to face dimensions	Section 1 acc. to ČSN-EN $558+$ A1 (5/2012)	
Type of plug	V-ported with soft seat sealing	
Flow characteristic	LDMspline ${ }^{\circ}$ in straigth way, linear in angle way	
Kvs values	0,63 to $360 \mathrm{~m}^{3} / \mathrm{h}$	
Leakage rate in direct way	Class IV. - S1 acc. to ČSN-EN 1349 (5/2001) (<0.0005 \% Kvs)	
Leakage rate in angle way	Not guaranteed (<2\% Kvs)	
Rangeability r	50:1	

Maximum permissible operating			
pressures [MPa] dle ČSN EN 1092-2			
Material	PN	Temperature $\left[{ }^{\circ} \mathrm{C}\right]$	
	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$	
Grey cast iron EN-JL $\mathbf{1 0 4 0}$	$\mathbf{6}$	0,60	0,54
(EN-GJL-250)	$\mathbf{1 6}$	1,60	1,44
Spheroidal cast iron EN-JS 1025	$\mathbf{2 5}$	2,50	2,43

Kvs values and differential pressures

The value $\Delta \mathrm{p}_{\text {max }}$ is maximum differential pressure when reliable closing and opening is guaranteed. Because of the seat and plug service life, it is recommended so that permanent differential pressure would not exceed 0.4 MPa (Grey cast iron) respective 0.6 Mpa (Spheroidal cast iron).

For further info. on actuating see actuators' catalogue sheets		Actuating (actuator) Linear force					see the table below						
		1000 N	2800 N										
		Kvs [$\mathrm{m}^{3} / \mathrm{h}$]	$\Delta \mathbf{p}_{\text {max }}$	$\Delta \mathbf{p}_{\text {max }}$									
DN	H						1	2	3	4	5	MPa	MPa
15	20	4	2.5	1.6	1	0.63	2.50	---					
20		6.3	4.0	2.5	---	---	1.96	---					
25		10	6.3	4.0	---	---	1.25	2.50					
32		16	10	6.3	---	---	0.77	2.50					
40		25	16	10	---	---	0.49	1.74					
50		40	25	16	---	---	0.25	1.02					
65		63	40	25	---	---	0.15	0.62					
80		100	63	40	---	---	0.10	0.42					
100		160	100	63	---	---	---	0.23					
125	40	250	160	100	---	---	---	0.15					
150		360	250	160	---	---	---	0.10					

Supplied types of actuators

			stroke
Siemens	Electrohydraulic actuator SKD $\mathbf{3 2 . 5 0}$	AC 230 V , 3-position control, $120 \mathrm{~s}, 1000 \mathrm{~N}$	20 mm
	Electrohydraulic actuator SKD $\mathbf{8 2 . 5 0}$	AC $24 \mathrm{~V}, 3$-position control, $120 \mathrm{~s}, 1000 \mathrm{~N}$	
	Electrohydraulic actuator SKD $\mathbf{3 2 . 5 1}$	AC $230 \mathrm{~V}, 3$-position control, 120 s , fail-safe fct., 1000 N	
	Electrohydraulic actuator SKD $\mathbf{3 2 . 2 1}$	AC 230 V , 3-position control, 30 s , fail-safe funct., 1000 N	
	Electrohydraulic actuator SKD 82.51	AC $24 \mathrm{~V}, 3$-position control, fail-safe function, 1000 N	
	Electrohydraulic actuator SKD 60	AC 24 V , control $0 . . .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}, 0-1000 \Omega, 1000 \mathrm{~N}$	
	Electrohydraulic actuator SKD 62	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}, 0-1000 \Omega$, fail-safe fct., 1000 N	
	Electrohydraulic actuator SKD 62UA	AC 24 V , control $0 . . .10 \mathrm{~V}, 4 . .20 \mathrm{~mA}, 0-1000 \Omega$, fail-safe fct., 1000 N	
Siemens	Electrohydraulic actuator SKB $\mathbf{3 2 . 5 0}$	AC 230 V , 3-position control, $120 \mathrm{~s}, 2800 \mathrm{~N}$	20 mm
	Electrohydraulic actuator SKB $\mathbf{8 2 . 5 0}$	AC $24 \mathrm{~V}, 3$-position control, $120 \mathrm{~s}, 2800 \mathrm{~N}$	
	Electrohydraulic actuator SKB $\mathbf{3 2 . 5 1}$	AC $230 \mathrm{~V}, 3$-position control, 120 s , fail-safe fct., 2800 N	
	Electrohydraulic actuator SKB $\mathbf{8 2 . 5 1}$	AC 24 V , 3-position control, 120 s , fail-safe fct., 2800 N	
	Electrohydraulic actuator SKB 60	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}, 0-1000 \Omega, 2800 \mathrm{~N}$	
	Electrohydraulic actuator SKB 62	AC 24 V , conrol $0 . . .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$, fail-safe fct., 0-1000 $2,2800 \mathrm{~N}$	
	Electrohydraulic actuator SKB 62UA	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$, fail-safe fct., $0-1000 \Omega, 2800 \mathrm{~N}$	
Siemens	Electrohydraulic actuator SKC $\mathbf{3 2 . 5 0}$	AC 230 V , 3-position control, 120 s	40 mm
	Electrohydraulic actuator SKC $\mathbf{8 2 . 5 0}$	AC 24 V , 3-position control, 120 s	
	Electrohydraulic actuator SKC $\mathbf{3 2 . 5 1}$	AC 230 V , 3-position control, 120 s , fail-safe function	
	Electrohydraulic actuator SKC $\mathbf{8 2 . 5 1}$	AC 24 V , 3-position control, 120 s , fail-safe function	
	Electrohydraulic actuator SKC 60	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}, 0-1000 \Omega, 2800 \mathrm{~N}$	
	Electrohydraulic actuator SKC 62	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$, fail-safe function, $0-1000 \Omega, 2800 \mathrm{~N}$	
	Electrohydraulic actuator SKC 62UA	AC 24 V , control $0 \ldots .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$, fail-safe function, $0-1000 \Omega, 2800 \mathrm{~N}$	

Dimensions and weights for the type RV 113 S

DN	PN 6							PN 16						
	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{n} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	n [mm]	$\begin{gathered} \mathrm{a} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$
15	80	55	38	11	4	12	2.6	95	65	46	14	4	14	3.5
20	90	65	48	11	4	14	3.5	105	75	56	14	4	16	4.6
25	100	75	58	11	4	14	4.1	115	85	65	14	4	16	5.4
32	120	90	69	14	4	16	6.3	140	100	76	19	4	18	8.5
40	130	100	78	14	4	16	7.9	150	110	84	19	4	18	10.5
50								165	125	99	19	4	20	16.7
65								185	145	118	19	4	20	23.0
80								200	160	132	19	8	22	29.5
100								220	180	156	19	8	24	40.5
125								250	210	184	19	8	26	58.8
150								285	240	211	23	8	26	80.7

DN	PN 25							PN 6, PN 16, PN 25						
	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{n} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{m} \\ {[\mathrm{~kg}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{4} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{f} \\ {[\mathbf{m m}]} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{V}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{V}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ {[\mathrm{~mm}]} \end{gathered}$
15	95	65	46	14	4	14	3.5	44	2	130	167	65	96	20
20	105	75	56	14	4	16	4.6	44	2	150	167	75	96	20
25	115	85	65	14	4	16	5.4	44	3	160	167	80	96	20
32	140	100	76	19	4	18	8.5	44	3	180	177	90	96	20
40	150	110	84	19	4	19	10.5	44	3	200	187	100	96	20
50	165	125	99	19	4	19	13.0	44	3	230	182	115	96	20
65	185	145	118	19	8	19	18.3	44	3	290	192	145	96	20
80	200	160	132	19	8	19	24.1	44	3	310	212	155	96	20
100	235	190	156	23	8	19	33.1	44	3	350	247	175	116	40
125	270	220	184	28	8	19	46.9	44	3	400	272	200	116	40
150	300	250	211	28	8	20	66.7	44	3	480	297	240	116	40

The valve complete specification No. for ordering RV 113

		XX	Xxx	X	Xx Xx	XX	Xxx	XXX	XX
1. Valve	Control valve	RV							
2. Series	Valves made of grey cast iron		113						
3. Type of valve	Two-way control valve			R					
	Three-way control valve			M					
	Two-way control valve for electrohydraulic actuators			L					
	Three-way control valve for electrohydraulic actuators			S					
4. Execution	Flanged, two-way				4				
	Flanged, three-way mixing (diverting)				6				
5. Body material	Grey cast iron (PN 06, 16)				3				
	Spheroidal cast iron (PN 25)				4				
6. Flow characteristic	LDMspline® / linear				3				
7. Kvs	Column No. acc. to Kvs value table				X				
8. Nominal pressure PN	PN 6 (grey castiron only) DN 15 to 40					06			
	PN 16 (grey castiron only)					16			
	PN 25 (spheroidal cast iron only)					25			
9. Max. temperature ${ }^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$						150		
10. Nominal size DN	DN 15 to 150							XXX	
11. Execution	Normal								
	Silicone free								SF

[^0]

Technical data					
Type	SAX 31.00	SAX 31.03	SAX 61.03	SAX 81.00	SAX 81.03
Suitable for valves	RV 113 R, M				
Voltage	230 V AC		$24 \mathrm{VAC} / \mathrm{DC}$		
Frequency	50 Hz				
Power consumption	3,5 VA	8VA	8 VA	3,5 VA	8VA
Control	3 - position		$\begin{gathered} 0-10 \mathrm{~V}, \\ 4-20 \mathrm{~mA}, \\ 0-1000 \mathrm{~W} \end{gathered}$	3 - position	
Open-close running time	120 s	30 s	30 s	120 s	30 s
Nominal force	800 N				
Travel	20 mm				
Enclosure	IP 54				
Process medium max. temp.	$150^{\circ} \mathrm{C}$				
Ambient and actuator surface temp. range	-15 to $55^{\circ} \mathrm{C}$				
Ambient humidity limit	< 95% r.v.				
Handle	yes				
Weight (included packing)	1,85 kg				

\rightarrow The specification and technical data are informative. Detailed and latest info you can find on www.siemens.com

Accessories for actuators
SAX31..., SAX81... (optional)
Auxiliary switch ASC10.51
$2 x$ auxiliary switch ASC10.51 (only without ASZ7.5)
Potentiometer 135Ω ASZ7.5/135
Potentiometer 200 ASZ7.5/200
Potentiometer 1000Ω ASZ7.5/1000
Weather shield ASK39.1
Stem heating element $\left(130^{\circ} \mathrm{C} . .160^{\circ} \mathrm{C}\right)$

Accessories for actuators

SAX61... (optional)
Auxiliary switch ASC10.51
2x auxiliary switch ASC10.51 (only without AZX61.1)
Function module AZX61.1
Weather shield ASK39.1
Stem heating element $\left(130^{\circ} \mathrm{C} . .160^{\circ} \mathrm{C}\right)$

Function module AZX61.1

The functional module allows sequential drive, adaptation of control signal and reversing signal.

Dimensions of actuator

Product type	A	B	C	C1	C2	D	E	>	>>
SAX...	242	124	150	68	82	80	100	100	200
Included cover ASK39.1	+25	154	300	200	100	-	-	-	-

Dimensions in mm

Connection terminals

SAX31..

AC 230 V, 3-position

N	Sytem neutral (SN)
	Positioning signal (actuator's stem extends)
Y2	Positioning signal (actuator's stem retracts)

SAX61..

AC/DC 24 V, DC 0... $10 \mathrm{~V} / 4 . . .20 \mathrm{~mA} / 0 . . .1000 \Omega$

G0-	Sytem neutral (SN)
G	System potential (SP)
Y	Positioning signal for DC $0 \ldots 10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}$
M	Measuring neutral
U	Position feedback DC 0... 10 V
Z	Positioning signal forced control

SAX81..

AC/DC 24 V, 3-position

AC/DC	System potential (SP)
Y1-	Positioning signal (actuator's stem extends)
Y2-	Positioning signal (actuator's stem retracts)

Auxiliary switch

Adjustable switching points, AC 24... 230 V
ASC10.51

Adjustment of zero point, DC 10 V

Potentiometer

ASZ7.5/..

Connection diagrams

SAX31..

SAX61..

SAX81..

Actuator
Controller
System neutral
System potential AC/DC 24 V
Y1, Y2
Positioning signals

Elektrohydraulic

 actuators
Siemens

SKD 32..., SKD 82...

Technical data					
Type	SKD 32.50	SKD 82.50	SKD 32.51	SKD 32.21	SKD 82.51
Suitable for valves	RV $113 \mathrm{~L}, \mathrm{~S}$				
Voltage	230 V AC	24 V AC	230 VAC		24 V AC
Frequency	$50 \ldots 60 \mathrm{~Hz}$				
Power consumption	10 VA		15 VA		
Control	3 - position		3 - position		
Running time open	120 s		120 s	30 s	120 s
closed	120 s		120 s	10 s	120 s
Fail-safe action time	---		8 s		
Nominal force	1000 N				
Travel	20 mm				
Enclosure	IP 54				
Process medium max. t.	$150^{\circ} \mathrm{C}$				
Ambient and actuator's surface temp. limit	-15 to $50{ }^{\circ} \mathrm{C}$				
Ambient humidity limit	5-95\% of relative humidity				
Weight	$3,6 \mathrm{~kg}$				

Accessories (optional)

Pair of auxiliary switches ASC9.3
Potentiometer 1000Ω ASZ7.3 *)
Potentiometer 135Ω ASZ7.31 *)
Potentiometer 200Ω ASZ7. 32 *)
*) only one potentiometer can be used per actuator

Dimensions of actuator

Wiring diagram of actuator

SKD32...
AC 230 V
3-position

SKD82...
AC 24 V
3-position

SKD32.21, SKD32.51

F1	safety termostat	L	phase
$\mathbf{N 1 , ~ N 2 ~}$	regulators	N	zero
$\mathbf{Y 1 , ~ Y 2 ~}$	actuators		

SKD82.51, SKD82.51U

F1 safety termostat
N1, N2 regulators
Y1, Y2 actuators

SKD32.50

Y1 control signal «opens»
Y2 control signal «closes»
21 fail-safe function

SKD82.50, SKD82.50U

$\begin{array}{ll}\text { Y1, Y2 } & \text { regulator contacts } \\ \text { Y1 } & \text { control signal (opens) } \\ \text { Y2 } & \text { contorl signal (closes) } \\ \text { 21 } & \text { fail-safe function }\end{array}$

Elektrohydraulické pohony
 Siemens

SKD 60..., SKD 62...

Technical data			
Type	SKD 60	SKD 62	SKD 62UA*)
Suitable for valves	RV $113 \mathrm{~L}, \mathrm{~S}$		
Voltage	24 VAC		
Freqency	$50 . . .60 \mathrm{~Hz}$		
Power consumption	$17 \mathrm{VA} / 12 \mathrm{VA}$		
Control	$0-10 \mathrm{~V}, 4-20 \mathrm{~mA}, 0-1000 \Omega$		
Running time open	30 s		
closed	15 s		
Fail-safe action time	---	15 s	
Nominal force	1000 N		
Travel	20 mm		
Enclosure	IP 54		
Process medium max. t.	$150^{\circ} \mathrm{C}$		
Ambient and actuator's surface temp. limit	-15 to $50^{\circ} \mathrm{C}$		
Ambient humidity limit	5-95\% of relative humidity		
Weight	3,6 kg	$3,85 \mathrm{~kg}$	3,6 kg

*) UA ... version with improved electronics

Accessories

Auxiliary switch 24 V ASC1. 6

Description

Each actuator with continuous control signal is equipped with ACT control technology enabling the following features as standard:
stroke range calibration
state indicationvia LED
flow characteristic selection (log/lin)
selection of control signal at Yterminal
feedbacksignal at U terminal corresponding to
control signal at Y terminal
forced control at Z terminal
Version with improved electronics (UA) further enables:

- inversion of control signal
sequence control
stroke limiting

Dimensions of actuator

All values in $v \mathrm{~mm}$

Connection terminals

SKD6...

G0	Voltage AC 24 V : System neutral (SN)
G	Voltage AC 24 V : System potential (SP)
Y	Control input DC 0... 10 (30) V or DC 4... 20 mA
M	Measuring neutral (=G0)
U	Output for measuring voltage DC 0...10 V or DC $4 . . .20 \mathrm{~mA}$
Z	Input for forced control

Auxiliary contact

ASC1. 6

Wiring diagram

SKD6..

AC 24 V
DC 0... $10 \mathrm{~V}, 4 \ldots .20 \mathrm{~mA}$, $0 . .1000 \Omega$

SKD60

SKD62

 SKD62UA

[^1]

Electrohydraulic actuators
 Siemens

> SKB 32..., SKB 82... SKC 32..., SKC 82..

Technical data								
Type	SKB 32.50	SKB 82.50	SKB 32.51	SKB 82.51	SKC 32.60	SKC 82.60	SKC 32.61	SKC 82.61
Suitable for valves	RV 113 L, S							
Voltage	230 V AC	24 VAC	230 V AC	24 V AC	230 V AC	24 VAC	230 V AC	24 VAC
Frequency	$50 . . .60 \mathrm{~Hz}$							
Power consumption	10 VA		15 VA		19 VA		24 VA	
Control	3 - position							
Running time open	120 s		120 s		120 s		120 s	
closed	120 s		120 s		120 s		120 s	
Fail-safe action time	---		10 s		---		18 s	
Nominal force	2800 N							
Travel	20 mm				40 mm			
Enclosure	IP 54							
Process medium max.t.	$150^{\circ} \mathrm{C}$							
Ambient and actuator's surface temperature range	-15 to $55^{\circ} \mathrm{C}$							
Ambient humidity range	0-95\% of relative humidity							
Weight	$8,4 \mathrm{~kg}$		$8,9 \mathrm{~kg}$		10 kg		10,5 kg	

Accessories (optional)

Pair of auxiliary switches ASC9.3
Potentiometer 1000Ω ASZ7.3 *)
Potentiometer 135Ω ASZ7.31 *)
Potentiometer 200Ω ASZ7.32 *)
*) only one potentiometer can be used per actuator

Dimensions of actuator

4 =>100mm

- $\boldsymbol{\rightarrow} \mathbf{2 0 0} \mathbf{~ m m ~ c o n n e c t i o n , ~ c o n t r o l , ~ m a i n t a n a n c e ~ e t c . ~}$

Wiring diagram

SKB32.., SKC 32..
AC 230 V
3-position

SKB32.51, SKC 32.51

$\begin{array}{lll}\text { F1 } & \text { safety termostat } & \text { L } \\ \text { N1, N2 } & \text { regulator } & \text { N }\end{array}$
regulator
Y1, Y2 actuators
SKB82.51, SKC82.51

SKB32.50, SKC 32.50

Y1 control signal «opens» Y2 control signal «closes» 21 fail-safe function

SKB82.50, SKC82.50

Y1 contol signal «opens» Y2 contol signal «closes» 21 fail-safe function

Electrohydraulic actuators
 Siemens

SKB 60..., SKB 62... SKC 60..., SKC 62...

Technical data

Type	SKB 60	SKB 62	SKB 62UA *)	SKC 60	SKC 62	SKC 62UA *)
Suitable for valves	RV 113 L, S					
Voltage	24 V					
Frequency	$50 \ldots 60 \mathrm{~Hz}$					
Power consumption	13 VA	17 VA		24 VA	28 VA	
Control	$0-10 \mathrm{~V}, 4-20 \mathrm{~mA}, 0-1000 \Omega$					
Running time open	120 s			120 s		
closed	15 s			20 s		
Fail-safe action time	---	15 s		---	20 s	
Nominal force	2800 N					
Travel	20 mm			40 mm		
Enclosure	IP 54					
Process medium max.t.	$150{ }^{\circ} \mathrm{C}$					
Ambient and actuator's surface temperature range	-15 to $55^{\circ} \mathrm{C}$					
Ambient humidity range	0-95\% of relative humidity					
Weight	8,6 kg			10 kg		

*) UA ... version with improved electronics

Accessories

Auxiliary switch 24 V ASC1. 6

Description

Each actuator with continuous control signal is equipped with ACT control technology enabling the following features as standard:
stroke range calibration
state indicationvia LED
flow characteristic selection (log/lin)
selection of control signal at Y terminal
feedbacksignal at U terminal corresponding to
control signal at Y terminal
forced control at Z terminal
Version with improved electronics (UA) further
enables: enables:
inversion of control signal
sequence control
stroke limiting

Dimensions of actuator

Connection terminals

SKB6.., SKC6..

G0	Voltage AC 24 V : System neutral (SN)
G	Voltage AC 24 V : System potential (SP)
Y	Control input DC 0... 10 (30) V or DC 4... 20 mA
M	Measuring neutral (=G0)
U	Output for measuring voltage DC 0...10 V or DC $4 \ldots 20 \mathrm{~mA}$
Z	Input for forced control

Wiring diagram

SKB6.., SKC6..
AC 24 V
DC $0 \ldots . .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$,
$0 \ldots 1000 \Omega$

Y1	actuator
N1	regulator
F1	safety thermostat
F2	anti-freeze thermostat clutches: $1-3$
the risk of freezing / contact is open	(contact switched by frost)
normal operation	

F3 temperature idicator
F4 anti-freeze monitor with output $0 \ldots 1000 \Omega$,
for example: QAF21.. or QAF61.. (only for SKD62UA) *
G (SP) system potential AC 24 V
G0 (SN)
system zero

* Only for sequential control and appropriate switch settings

Electric actuators Belimo

NV..., SV..., EV..., RV...

Type	NV230A-RE	NV24A-RE	NV24A-MP-RE	NVC24A-MP-RE	NVK24A-3-RE	NVK24A-MP-RE
Suitable for valves	RV 113 R, M					
Voltage	AC 230 V	AC/DC 24 V				
Frequency	$50 / 60 \mathrm{~Hz}$					
Motor power / Sizing	$2 \mathrm{~W} / 4,5 \mathrm{VA}$	1,5 W / 3 VA		3,5 W / 5,5 VA	2,5 W / 6 VA	
Control	3 - position		DC (0)2...10V adjustable		3 - position	
Running time ($\mathrm{for} \mathbf{2 0 ~ m m) ~}$	150 s			35 s	150 s	
Fail-safe action time	---				35 s	
Fail-safe function	---				NC, NO, zze nastavit libovolnou pozici	
Nominal force	1000 N					
Travel	20 mm					
Enclosure	IP 54					
Process medium max. temp.	+5 ... $150{ }^{\circ} \mathrm{C}$					
Ambient temperature range	0 to $50^{\circ} \mathrm{C}$					
Ambient humidity limit	5 ... 95%					
Weight	2,6 kg		2,5 kg	2,6 kg	2,8 kg	

Technical data						
Type	NVK230A-3-RE	NVKC24A-MP-RE	SV24A-MP-RE	SVC230A-RE	SV24A-RE	SVC24A-MP-RE
Suitable for valves	RV 113 R, M					
Voltage	AC 230 V	AC/DC 24 V		AC 230 V	AC/DC 24 V	
Frequency	$50 / 60 \mathrm{~Hz}$					
Motor power / Sizing	$2 \mathrm{~W} / 4,5 \mathrm{VA}$	$2 \mathrm{~W} / 3,5 \mathrm{VA}$	4,5 W / 9 VA	$2 \mathrm{~W} / 4 \mathrm{VA}$	2,5 W / 5VA	$4 \mathrm{~W} / 6 \mathrm{VA}$
Control	3 - position	DC (0)2...10V adustable		3 - position		
Running time (for 20 mm)	150 s	35 s		150 s		35 s
Fail-safe action time	35 s		---			
Fail-safe function	NC, NO, adjustable position		---			
Nominal force	1000 N		1500 N			
Travel	20 mm					
Enclosure	IP 54					
Process medium max. temp.	$+5 . .150{ }^{\circ} \mathrm{C}$					
Ambient temperature range	0 až $50{ }^{\circ} \mathrm{C}$					
Ambient humidity limit	5 ... 95 \%					
Weight	2,9 kg	2,8 kg	2,6 kg			

Technical data					
Type	EV230A-RE	EV24A-RE	EV24A-MP-RE	EVC24A-MF-RE	RV24A-MF-RE
Suitable for valves	RV 113 R, M				
Voltage	AC 230 V		AC/DC 24 V		
Frequency	$50 / 60 \mathrm{~Hz}$				
Motor power / Sizing	5,5 W / 9,5 VA	$2 \mathrm{~W} / 4,5 \mathrm{VA}$	$4 \mathrm{~W} / 6 \mathrm{VA}$	$11 \mathrm{~W} / 18 \mathrm{VA}$	$6 \mathrm{~W} / 11 \mathrm{VA}$
Control	3 - position		DC (0)2...10V adjustable		
Running time (for 20 mm)	150 s			35 s	150 s
Fail-safe action time	---				
Fail-safe function	---				
Nominal force	2500 N				4500 N
Travel	40 mm				
Enclosure	IP 54				
Process medium max. temp.	+5 ... $150{ }^{\circ} \mathrm{C}$				
Ambient temperature range	0 to $50^{\circ} \mathrm{C}$				
Ambient humidity limit	$5 . . .95 \%$				
Weight	7,4 kg			7,5 kg	

\rightarrow The specification and technical data are informative. Detailed and latest info you can find on www.belimo.ch

Dimensions of actuator

Type	Dimensions [mm]							Drawing
	A	B	C	D	E	F	G	
NV230A-RE	193	113	200	190	290	45	---	draw. 1
NV24A-RE	193	113	200	190	290	45	---	
NV24A-MP-RE	215	113	200	190	290	45	---	
NVC24A-MP-RE	215	113	200	190	290	45	---	
NVK24A-3-RE	244	113	217	207	307	45	---	
NVK24A-MP-RE	244	113	217	207	307	45	---	
NVK230A-3-RE	250	113	209	207	307	45	---	draw. 1
NVKC24A-MP-RE	244	113	217	207	307	45	---	
SV24A-MP-RE	215	113	200	190	290	45	---	
SV230A-RE	215	113	200	190	290	45	---	
SV24A-RE	193	113	200	190	290	45	---	
SVC24A-MP-RE	215	113	200	190	290	45	---	
EV230A-RE	227	140	342... 408	---	315	53	44... 110	draw. 2
EV24A-RE	205	140	342... 408	---	315	53	44... 110	
EV24A-MP-RE	227	140	342... 408	---	315	53	44... 110	
EVC24A-MF-RE	233	140	344... 410	---	315	53	44...110	
RV24A-MF-RE	233	140	344... 410	---	315	53	44... 110	

,

draw. 2: Actuators EV..., RV...

Electric actuators
Ekorex

PTN 2

Technical data				
Type	PTN 2.20	PTN 2.25	PTN 2.32	PTN 2.40
Suitable for valves	RV 113 R, M			
Voltage	$230 \mathrm{~V}+6 \%,-12 \%$ or $24 \mathrm{~V}+10 \%,-15 \% \mathrm{AC}$			
Frequency	50 Hz			
Power consumption	max. 19 VA			
Control	3 - position, (0) 4-20 mA, 0-10 V			
Nominal force	2000 N	2500 N	3200 N	4000 N
Travel	20 and 40 mm			
Enclosure	IP 65			
Process medium max. temp.	acc. to used valve			
Ambient temperature range	-20 to $60^{\circ} \mathrm{C}$			
Ambient humidity range	5 to 100% with condensation			
Weight	4 kg			

Wiring diagram

Direct control

MO

KPO - terminal position switch for "OPEN" position
M - motor
C - capacitor
V - resistance transmitter 100Ω
I1 - resistance transmitter with convertor 4-20 mA - 2-wire execution
$\mathbf{I 2}$ - resistance transmitter with convertor - separate feeding 24V AC
C1 - capacitive transmitter with converter 4-20 mA

Specification of actuator PTN 2

Note:

The table applies to actuator with 3-position control. It is possible to supply actuator with control signal of 0-10 V, 0-20 mA, 4-20 mA and with hand wheel outside
Example of marking: PTN 2-XX.XX.XX.XX / control 4-20 mA / RO)

Dimensions of actuator PTN 2

Description

The actuators are designed for regulators with continuous or contact output. They are suitable to actuate two-way and three-way valves series RV 113 and RV 2xx. The actuator consists of cover made of self-extinguishing plastic housing a stepping motor, control unit with SUT technology, signalisation LEDs and no-maintenenance gear made of sintered steel. The connection to its valve is provided by stainless steel columns and yoke made of light metal alloy. Electric connection (max. 2,5 mm2) is provided with the aid of screw clamps. There are three self-breaking openings for cable gands $M 20 \times 1,5(2 x)$ and $M 16 \times 1,5$. One cable gland M20x1,5 is a part of standard delivery.

Application

Based on a connection variant (see wiring diagram), the actuator can be used as floating ($0 \ldots .10 \mathrm{~V}$ or $4 \ldots 2 \mathrm{~mA}$), or 2-position (open-closed) or 3-position (open-stop-closed). Manual operating is available with outer handle. The motor is disconnected when the hand crank is folded back. When the handle is positioned back, the actuator resumes into required position (without initialization). If the hand crank remains folded out, the actuator keeps its set position.

Electric actuators LDM

ANT40.11

Installation position

Upright, vertical, max. horizontal.

SUT Technology

The actuator can be controlled by regulators with continuous (0... 10 V and/or $4 \ldots 20 \mathrm{~mA}$) or contact (2-position or 3-position) output. The actuator feeding is optional. The running speed and output characteristic is also optional.

Features

electronic switch off based on the running force registered by stops inside appliance orvalve. automatic adapting to the valve stroke code switch for characteristic and running time selection
hand crankfor manual operating with swithing the motor off as a start for new initiation possibility of direction change of control signal (feeding voltage at terminal 2a or 2 b)

Technical data		
Type	ANT40.11	
Suitable for valves	RV $\mathbf{1 1 3} \mathbf{R}, \mathbf{M}$	
Execution	Electric actuator with SUT technology	
Voltage	$24 \mathrm{~V} \mathrm{AC} \pm 20 \%, 50-60 \mathrm{~Hz} ; 24 \mathrm{VDC} \pm 15 \% ; 230 \mathrm{~V} \mathrm{AC} \pm 15 \%$	
Frequency	50 Hz	
Power consumption	18 VA	
Control	$0-10 \mathrm{~V}, 4-20 \mathrm{~mA}, 3$-bod., 2-bod.	
Open-close running time	Adjustable 2, 4, $6 \mathrm{~s} . \mathrm{mm}^{-1}$	
Nominal force	2500 N	
Travel	20 and 40 mm	
Enclosure	IP 66	
Process medium max. temp.	$150^{\circ} \mathrm{C}$	
Ambient temperature range	-10 and $55^{\circ} \mathrm{C}$	
Ambient humidity range	$<95 \%$ of relative humidity	
Weight	$4,5 \mathrm{~kg}$	

Accessories

0313529001
 0372332001
 0372333001
 0372333002
 0372334001
 0372334002
 0372334006
 0386263001
 0386263002

Split range unit to set sequences
Module, plug-in type, for $230 \mathrm{~V} \pm 15 \%$ voltage supply and 3-point activation, additional power 2 VA
2 auxiliary changeover switches, continuously adjustable, additional load 5(2) A, 12-250 V, 3(1) A, 12-250 V AC ${ }^{1}$
2 auxiliary changeover contacts with gold-plated contacts for low currents from 1 mA , max. $30 \mathrm{~V}, 3(1) \mathrm{A}, 12-250 \mathrm{VAC}$
Potentiometer 2000 , 1 W, 24 V 11
Potentiometer $130 \Omega, 1 \mathrm{~W}, 24 \mathrm{~V}^{1)}$
Potentiometer $1000 \Omega, 1 \mathrm{~W}, 24 \mathrm{~V}^{11}$
Screwed cable gland M16 $\times 1,5$
Screwed cable gland M20 x 1,5 (1 piece of cable gland is standard part of actuator delivery)
one option of accessory can be used only

Operation

Initialisation and feedback signal

When used as a continuous drive, the device initialises itself automatically. As soon as voltage is applied to the drive for the first time, it moves to the lower limit stop on the valve, thus enabling automatic connection with the valve spindle. Then it moves to the upper limit stop and the value is recorded and saved with the help of a path measurement system. The control signal and the feedback signal are adjusted to this effective stroke. There is no re-initialisation if the voltage is interrupted or if the voltage supply is removed. The values remain saved.
To re-initialise, the drive must be connected to the voltage. To trigger an initialisation, fold the hand crank out and back in again twice within 4 seconds. Both the LEDs will then flash red.
During initialisation, the feedback signal is inactive, or it corresponds to a value of "0". Initialisation uses the shortest run time. The reinitialisation is only valid once the entire procedure has been completed. Folding the hand crank out again will interrupt the procedure.
If the valve drive detects a blockage, it will report this by setting the feedback signal to 0 V after approx. 90 s . However, the drive will try to overcome the blockage during this time. If it is possible to overcome the blockage, the normal control function is activated again and the feedbacksignal is resumed.
No initialisation is performed with a 2-position or 3-position control. The feedbacksignal is inactive.

Connection as a 2-point valve drive (24 V)

This activation (OPEN/CLOSED) can take place via two cables. The voltage is applied to terminals 1 and 2a. Applying the voltage (24 V) to terminal $2 b$ opens the valve's control passage. After this voltage has been switched off, the drive moves to the opposite end position and closes the valve. The electronic motor switch-off responds in the end positions (valve limit stop, or when maximum stroke is reached) or in case of overload (no limitswitches).
The coding switch can be used to set the run times. The characteristic curve cannot be selected in this case (resulting in the characteristic curve for the valve). Terminals 3i, $3 u$ and 44 must not be connected.

Connection as a 3-point valve drive (24 V)

Applying voltage to terminal 2 a (or 2b) makes it possible to move the valve to any desired position. If voltage is applied to terminals 1 and $2 b$, the valve shaft moves out and opens the valve. It moves in and closes the valve when the electrical circuit is closed over terminals 1 and 2a.
In the end positions (at the valve stop, or when the maximum stroke is reached) or in case of an overload, the electronic motor switch-off responds (no limit switches). The direction of the stroke can be changed by transposing the connections.
The coding switch is used to set the run times. In this case, the characteristic curve cannot be selected (resulting in the characteristic curve for the valve). Terminals $3 i, 3 u$ and 44 must not be connected.

Connection as a 2-point/3-point or continuous activation of valve drive with 230 V (accessory 0372332)

The accessory module is plugged on in the connection area and is then connected for 3-position mode. If this accessory is used, only control in 3-position mode is available. The coding switch on the baseboard can be used to select the run times. The characteristic curve cannot be selected; the characteristic curve for the valve is applicable.
The module has a built-in switch which is automatically moved into the correct position when the module is installed. On this drive (which has no spring return action) the switching lever is in the lower position.
The accessory module is not suitable for 2-position activation.

Connection as continuous control ($0 . . .10 \mathrm{~V}$ and/or $4 . . .20 \mathrm{~mA}$) -

 (24V)The built-in positioner controls the drive depending on the controller outputsignaly.
The control signal used is a voltage signal ($0 \ldots 10 \mathrm{~V}$ -) at terminal 3 u , or a current signal at terminal 3i. If a control signal is present at both terminals $(3 u(0 \ldots 10 \mathrm{~V})$ and $3 i(4 \ldots 20 \mathrm{~mA}))$ simultaneously, the input with the highervalue takes priority.
Mode of action 1 (mains voltage to internal connection 2a):
as the output signal increases, the valve shaft moves out and opens the valve (control passage).
Mode of action 2 (mains voltage to internal connection 2 b):
as the output signal increases, the valve shaft moves in and closes the valve (control passage).
The starting point and the control span are fixed. To set partial ranges (and only for voltage input 3u), a split range unit is available as an accessory (see the split range unit function); this unit is intended for installation in the drive.
After the voltage supply is applied and after initialisation, the drive moves to each valve stroke between 0% and 100%, depending on the control signal. The electronics and the path measurement system ensure that no stroke is lost, and the drive does not require reinitialisation at intervals. When the end positions are reached, the position is checked, corrected as necessary and stored again. This ensures parallel running of several drives of the same SUT type. Feedback signal $y 0=0 . . .10 \mathrm{~V}$ corresponds to the effective valve stroke of 0 to 100%.
If the $0 . . .10 \mathrm{~V}$ control signal is interrupted in direction of action 1 , the spindle retracts completely and the valve is closed. So that the valve can be opened (direction of action 1), a voltage of 10 V must be connected between terminals 1 and $3 u$, or it is necessary to switch over to direction of action 2 .
The coding switch can be used to set the characteristic for the valve.

Signal LED display

Both LEDs flashing red: initialisation procedure
Upper LED lit red: upper limit stop or "CLOSED" position reached
Lower LED lit red: lower limit stop or "OPEN" position reached
Upper LED flashing green: drive running, moving towards "CLOSED" position
Upper LED lit green: drive stationary, last direction of running "CLOSED"
Lower LED flashing green: drive running, moving towards "OPEN" position
Lower LED flashing green: drive stationary, last direction of running "OPEN"
Both LEDs are lit green: waiting time after switching on, or after emergency function
No LED lit: no voltage supply (terminal 2a or 2b)
Both LEDs are flashing red and green: drive is in manual mode

Accessories application

Split range unit

This accessory can be built into the drive or can be accommodated externally in an electrical distribution box. The starting point Uo and the control span ΔU can be set with the help of a potentiometer. This makes it possible to operate several regulating units in sequence or in a cascade with the control signal from the controller. The input signal (partial range) is converted into an output signal of $0 \ldots 10 \mathrm{~V}$.

Auxiliary changeover switch

Auxiliary changeover switch double 0372333001

- Switching capacity max. $250 \mathrm{~V} \sim$, min. current 250 mA at 12 V (or20mA at 20V)
- Switching capacity max. 12... $30 \mathrm{~V}=$, max. current 100 mA

Auxiliary changeoverswitch double gold 0372333002

- Switching capacity max. 250 V , min. current 1 mA at5V
- Switching capacity max.0.1... $30 \mathrm{~V}=$, current 1... 100 mA

Even if used only once above 10 mA or up to 50 V , the gold coating will be destroyed. The switch can then be used only for higher switching outputs.

Engineering and installation notes

Penetration of condensate or dripping water, etc. along the valve spindle into the drive should be avoided.
The valve is plugged directly onto the drive and is fixed with screws (no further settings are needed). The drive is automatically connected to the valve spindle. When the device is delivered, the drive spindle is in the middle position.
The housing contains three breakthrough-type cable leadthroughs which are broken open automatically when the cable leadthrough is screwed in. The stepping motor/ electronics concept guarantees parallel running of several valve drives of the same type. The crosssection of the connecting cable should be selected according to the line length and the number of drives. With five drives connected in parallel and a line length of 50 m , we recommend using a cable cross-section of $1.5 \mathrm{~mm}^{2}$ (power consumption of the drive $\times 5$). The drive can be assembled with a maximum of one 230 V module, one additional accessory component (auxiliary switch or potentiometer) and the split range unit.

Warnings

If the temperature of the medium in the valve is high, the drive columns and the shaft may also reach high temperatures. It is necessary to ensure that the maximum ambient temperauture be max. $55^{\circ} \mathrm{C}$ during operation. If the temperature exceeds this limit, it is recommended to insulate the valve (eg. IKA insulation, see catalogue sheet 01-09.6).
If a failure of the final control element could cause damage, additional protective precautions must be taken.

CE - Conformity

Directive EMC 2014/30/ES Low Voltage Directive 2014/35/ES

EN 61000-6-2 *)
EN 61000-6-4

EN 607301
EN 60730-2-14
Over-voltage category III
Degree of pollution III
*) HF immunity, limitation of feedback signal between 80 MHz a 1000 Mhz criterion B , otherwise criterion A

Switch coding

Actuator characteristic (switches 3 and 4)

- optional for actuators with floating control only

Run time (switches 1 and 2)

- optional for all types of control of the actuator

Note: Data in bold mean factory settings

Dimensions of actuator and a mid piece for higher temperatures

Wiring diagram of actuators

(8)

Wiring diagram of accessories

0372332001

A10376

0372334

A01363

Electric actuators
 LDM

ANT40.11S
ANT40.11R

Description

The actuator is designed for regulators with continuous or contact output. They are suitable for actuating two-way or three way valves series RV 113 and RV2xx. The actuator is equipped with a spring ensuring the actuator runs into its defined end position in case of power supply failure or when the sensor of limit value is activated. The actuator consists of a cover made of selfextinguishing plastic housing stepping motor, control unit with SUT technology, signalisation LEDs and no-maintenance gear made of sintered steel and spring roll. The connection to its valve is provided by stainless steel columns and yoke made of light metal alloy. Electric connection (max. 2,5 mm 2) is provided with the aid of screw clamps. There are three self-breaking openings for cable gands $\mathrm{M} 20 \times 1,5(2 \times)$ and $\mathrm{M} 16 \times 1,5$. One cable gland $\mathrm{M} 20 \times 1,5$ is a part of standard delivery.

Application

Based on a connection variant (see wiring diagram), the actuator can be used as floating ($0 . . .10 \mathrm{~V}$ or $4 \ldots .20 \mathrm{~mA}$), or 2-position (open-closed) or 3position (open-stop-closed). Manual operating is with outer hand crank. The motor is disconnected when the hand crank is folded out. When the hand crank is folded back, the actuator resumes into required position (without initialization). If the hand crank remains folded out, the actuator keeps its set position.

Installation position

Upright, vertical, max. horizontal.

SUT Technology

The actuator can be controlled by regulators with continuous ($0 . . .10 \mathrm{~V}$ and/or 4... 20 mA) or contact (2-position or3-position) output. The actuator feeding is optional. The running speed and output characteristic is also optional.

Features

electronic switch off based on the running force registered by stops inside apliance or valve automatic adapting to the valve stroke code switch for characteristic and running time selection hand crankfor manual operating with swithing the motor off as a start fornew initiation
possibility of direction change of control signal (feeding voltage at terminal 2a or 2b)

Direct and indirect function of actuator

Direct function ensures that actuator stem extends (the valve opens) upon power supply failure. Indirect function ensures that actuator stem retracts (the valve closes) upon power supply failure.

Technical data		
Type	ANT40.11S	ANT40.11R
Specification code	RV 113 R, M	
Execution	Electric actuator with spring return action and SUT technology	
Voltage	$24 \mathrm{VAC} \pm 20 \%, 50-60 \mathrm{~Hz} ; 24 \mathrm{~V}$ DC $\pm 15 \%$; $230 \mathrm{VAC} \pm 15 \%$	
Frequency	50 Hz	
Powe consumption	in operation mode 20 VA , in rest mode 7 VA	
Control	$0-10 \mathrm{~V}, 4-20 \mathrm{~mA}$, 3-position, 2-position	
Open-close running time	Adjustable 2, 4, 6 s.mm ${ }^{-1}$	
Running time for fail-safe function	Acc. to stroke 15-30 s	
Fail-safe function	indirect (NC)	Direct (NO)
Nominal force	2000 N	
Stroke	20 and 40 mm	
Enclosure	IP 66	
Process medium max. temperature	$150^{\circ} \mathrm{C}$	
Ambient temperature range	-10 to $55^{\circ} \mathrm{C}$	
Ambient humidity range	< 95% of relative humidity	
Weight	$6,1 \mathrm{~kg}$	

Accessories

0313529001
 0372332001
 0372333001
 0372333002
 0372334001
 0372334002
 0372334006
 0386263001
 0386263002

Split range unit to set sequences
Module, plug-in type, for $230 \mathrm{~V} \pm 15 \%$ voltage supply and 3-point activation, additional power 2 VA
2 auxiliary changeover switches, continuously adjustable, additional load 5(2) A, 12-250 V, 3(1) A, 12-250 V AC ${ }^{17}$
2 auxiliary changeover contacts with gold-plated contacts for low currents from 1 mA , max. $30 \mathrm{~V}, 3(1) \mathrm{A}, 12-250 \mathrm{VAC}$
Potentiometer $2000 \Omega, 1$ W, 24 V 11
Potentiometer $130 \Omega, 1 \mathrm{~W}, 24 \mathrm{~V}^{1)}$
Potentiometer $1000 \Omega, 1 \mathrm{~W}, 24 \mathrm{~V}^{11}$
Screwed cable gland M16 $\times 1,5$
Screwed cable gland M20 $\times 1,5$ (1 piece of cable gland is standard part of actuator delivery)
${ }^{1)}$ one option of accessory can be used only

Operation

After a new start, or after a start following activation of the reset (terminal 21), up to 45 s of waiting time will pass before the drive is available again. Depending on the type of connection (see the wiring dia-gram), the device can be used as a continuous-action drive ($0 . . .10 \mathrm{~V}$ and/or $4 \ldots 20$ mA), a 2-point drive (open-closed) or a 3-position drive (open-stopclosed).

Initialisation and feedback signal

The drive initialises itselfautomatically, whether it is used in continuousaction, 2-position or 3-position mode. As soon as voltage is applied to the drive for the first time and the waiting period has elapsed, the drive moves to the lower limit stop on the valve, thus enabling automatic connection with the valve spindle. Then it moves to the upper limit stop, and the value is recorded and saved with the help of a path measurement system. The control signal and the feedback signal are adjusted to this effective stroke. After an interruption to the voltage or a spring return action, no re-initialisation is performed and the values are saved.
To re-initialise, the drive must be connected to the voltage. To trigger an initialisation, fold the hand crank out and back in again twice within 4 seconds. Both the LEDs will then flash red.
During initialisation, the feedback signal is inactive, or it corresponds to a value of " 0 ". Initialisation uses the shortest run time. The re-initialisation is only valid once the entire procedure has been completed. Folding the hand crank out again will interrupt the procedure.
If the valve drive detects a blockage, it will report this by setting the feedback signal to 0 V after approx. 90 s . However, the drive will try to overcome the blockage during this time. If it is possible to overcome the blockage, the normal control function is activated again and the feedbacksignal is resumed.

Spring return

If the voltage supply fails or is switched off, or if a monitoring contact responds, the brushless DC mo-tor releases the gear and the drive is moved into the respective end position (depending on the design version) by the pre-tensioned spring. As this happens, the control function of the drive is disabled for 45 s (both LEDs flash green) so that the end position can be reached in every case. The reset speed is controlled with the help of the motor so that there are no pressure surges in the line. The brushless DC motor has three functions: as a magnet to hold the position, as a brake (by acting as a generator) and as a motor for the control function. After a spring return function, the drive does not reinitialise itself.

Connection as a 2-position valve drive (24 V)

This activation (OPEN/CLOSED) can take place via two cables. The voltage is applied to terminals 12 a and 21. Applying the voltage (24 V) to terminal 2 b causes the coupling rod to extend and opens the valve. After this voltage has been switched off, the drive moves to the opposite end position and closes the valve. The electronic motor switch-off responds in the end positions (valve limit stop, or when maximum stroke is reached) or in case of overload (no limit switches).
The coding switch can be used to set the run times. The characteristic curve cannot be selected in this case (resulting in the characteristic
curve for the valve). The feedback signal is active as long as the initialisation is performed and there is voltage present at terminal 21. Terminals $3 i, 3 u$ and 44 must not be connected.

Connection as a 3-position valve drive (24V)

Applying voltage to terminal 2a (or 2b) makes it possible to move the valve to any desired position. If voltage is applied to terminals 1 and $2 b$, the valve shaft moves out and opens the valve. It moves in and closes the valve when the electrical circuit is closed over terminals 1 and $2 a$.
In the end positions (at the valve stop, or when the maximum stroke is reached) or in case of an overload, the electronic motor switch-off responds (no limit switches). The direction of the stroke can be changed by transposing the connections.
The coding switch is used to set the run times. In this case, the characteristic curve cannot be selected (resulting in the characteristic curve for the valve). The feedback signal is active as long as the initialisation is performed and there is voltage present at terminal 21 . Terminals $3 i, 3 u$ must not be connected

Connection as a 3 -position valve drive with 230 V

The accessory module is plugged on in the connection area and is then connected for 3-position mode. If this accessory is used, only control in 3-position mode is available. The coding switch on the baseboard can be used to select the run times. The characteristic curve cannot be selected; the characteristic curve for the valve is applicable.
The module has a built-in switch which is automatically moved into the correct position when the module is installed. With this application, the switching lever is in the upper position.
The accessory module is not suitable for 2-position activation.

Connection to a control voltage ($0 . . .10 \mathrm{~V}$ and/or $4 . . .20 \mathrm{~mA}$)

The built-in positioner controls the drive depending on the controller outputsignaly.
The control signal used is a voltage signal $(0 \ldots 10 \mathrm{~V}-)$ at terminal 3 u , or a currentsignal at terminal 3i.
If a control signal is present at both terminals $(3 \mathrm{u}(0 \ldots 10 \mathrm{~V})$ and $3 i(4 \ldots 20$ mA) simultaneously, the input with the higher value takes priority.
Mode of action 1 (mains voltage to internal connection 2a):
as the output signal increases, the valve shaft moves out and opens the valve (control passage).
Mode of action 2 (mains voltage to internal connection 2 b):
as the output signal increases, the valve shaft moves in and closes the valve (control passage).
The starting point and the control span are fixed. To set partial ranges (and only for voltage input 3u), a split range unit is available as an accessory (see the split range unit function); this unit is intended for installation in the drive.
After the voltage supply is applied and after initialisation, the drive moves to each valve stroke between 0% and 100%, depending on the control signal.
The electronics and the path measurement system ensure that no stroke is lost, and the drive does not require re-initialisation at intervals. When the end positions are reached, the position is checked, corrected as necessary and stored again. This ensures parallel running of several drives of the same type. Feedback signal y0 $=0 \ldots 10 \mathrm{~V}$ corresponds to the effective valve stroke of0 to 100\%.

If the control signal $0 . .10 \mathrm{~V}$ is interrupted in mode of action 1 , the spindle moves in completely and the valve is closed. So that the valve can be opened (direction of action 1), a voltage of 10 V must be connected between terminals 1 and $3 u$, or it is necessary to switch over to direction of action 2.
The coding switch can be used to set the characteristic curve for the valve: linear, equal percentage or quadratic. This characteristic curve can only be generated if the drive is used as a continuous drive. Additional switches can be used to select the run times (applicable for 2position, 3-position or continuous function).

Signal LED display

Both LEDs flashing red: initialisation procedure
Upper LED lit red: upper limit stop or "CLOSED" position reached
Lower LED lit red: lower limit stop or "OPEN" position reached
Upper LED flashing green: drive running, moving towards "CLOSED" position
Upper LED lit green: drive stationary, last direction of running "CLOSED"
Lower LED flashing green: drive running, moving towards "OPEN" position
Lower LED flashing green: drive stationary, last direction of running "OPEN" Both LEDs are lit green: waiting time after switching on, or after emergency function
No LED lit: no voltage supply (terminal 2a or 2b)
Both LEDs are flashing red and green: drive is in manual mode

Accesories application

Split range unit

This accessory can be built into the drive or can be accommodated externally in an electrical distribution box. The starting point Uo and the control span ΔU can be set with the help of a potentiometer. This makes it possible to operate several regulating units in sequence or in a cascade with the control signal from the controller. The input signal (partial range) is converted into an output signal of $0 . . .10 \mathrm{~V}$.

Auxiliary changeover switch

Auxiliary changeover switch double 0372333001

- Switching capacity max. 250 V , min. current 250 mA at 12 V (or 20 mA at 20 V)
- Switching capacity max. 12...30V=, max. current 100 mA

Auxiliary changeover switch double gold 0372333002

- Switching capacity max. 250 V , min. current 1 mA at 5 V
- Switching capacity max. 0.1...30V=, current 1... 100 mA

Even if used only once above 10 mA or up to 50 V , the gold coating will be destroyed. The switch can then be used only for higher switching outputs.

Engineering and installation notes

Penetration of condensate or dripping water, etc. along the valve spindle into the drive should be avoided.
The valve is plugged directly onto the drive and is fixed with screws (no further settings are needed). The drive is automatically connected to the valve spindle. When the device is delivered, the drive spindle is in the middle position.
The housing contains three breakthrough-type cable leadthroughs which are broken open automatically when the cable leadthrough is screwed in. The stepping motor/ electronics concept guarantees parallel running of several valve drives of the same type. The crosssection of the connecting cable should be selected according to the line length and the number of drives. With five drives connected in parallel and a line length of 50 m , we recommend using a cable cross-section of $1.5 \mathrm{~mm}^{2}$ (power consumption of the drive $\times 5$). The drive can be assembled with a maximum of one 230 V module, one additional accessory component (auxiliary switch or potentiometer) and the split range unit.

Warnings

If the temperature of the medium in the valve is high, the drive columns and the shaft may also reach high temperatures. It is necessary to ensure that the maximum ambient temperauture be max. $55^{\circ} \mathrm{C}$ during operation. If the temperature exceeds this limit, it is recommended to insulate the valve (e.g. IKA insulation, see catalogue sheet 01-09.6).
If a failure of the final control element could cause damage, additional protective precautions must be taken.

CE - Conformity

Directive EMC 2014/30/ES
EN 61000-6-2 *)
EN 61000-6-4

Low Voltage Directive 2014/35/ES
EN 607301
EN 60730-2-14
Over-voltage category III
Degree of pollution III
*) HF immunity, limitation of feedback signal between 80 MHz a 1000 Mhz criterion B , otherwise criterion A

Switch coding

Actuator characteristic (switches 3 and 4)

- optional for actuators with floating control only

Characteristics of the actuator ANT

B (quadratic)

C (logarithmic)

Run time (switches 1 and 2)

- optional for all types of control of the actuator

Note: Data in bold mean factory settings

Dimensions of actuator and a mid piece for higher temperatures

Wiring diagram of actuators

(8)

Wiring diagram of accessories

0313529

A09421c

0372332001

372333
372334

A10376

A01363

PS AUTOMATION

PSL202 AMS11
 PSL204 AMS11
 PSL204 AMS12

Technical data						
Type	PSL202 AMS11					
Suitable for valves	RV 113 R, M					
Voltage	AC 230 V		AC 24 V		DC 24 V	
Frequency	50 Hz					
Motor power	13 W		12 W		11 W	
Rated / Maximal current	0,07 / 0,1 A		0,7/0,9 A		0,4 / 0,6 A	
Control	3-position; $0(2)-10 \mathrm{~V} ; 00(4)-20 \mathrm{~mA}$					
Running time Fail-safe action time	adjustable value $0,45-0,9 \mathrm{~mm} / \mathrm{s}$					
Fail-safe function	electric, PSCP equipment (accessories) needed					
Nominal force	max. 2300 N					
Travel	50 mm					
Enclosure	IP 65					
Process medium max. temperature	+5 to $150{ }^{\circ} \mathrm{C}$					
Ambient temperature range	-20 to $60{ }^{\circ} \mathrm{C}$					
Ambient humidity range	5 ... 95 \%					
Weight	8 kg without accessories / 8,4 kg with PSCP					
Type	PSL204 AMS11			PSL204 AMS12		
Suitable for valves	RV 113 R, M					
Voltage	AC 230 V	AC 24 V	DC 24 V	AC 230 V	AC 24 V	DC 24 V
Frequency	50 Hz					
Motor power	19 W	18 W	16 W	57 W	53 W	48 W
Rated / Maximal current	0,11/0,14 A	1,1/1,4 A	0,7 / 0,9 A	0,33 / 0,43 A	3,15 / 4,1 A	2,0/2,6 A
Control	3-position; $0(2)-10 \mathrm{~V} ; 0$ (4)-20 mA					
Running time Fail-safe action time	adjustable value 0,45-0,9 mm/s			adjustable value 2,25-4,5 mm/s		
Fail-safe function	electric, PSCP equipment (accessories) needed					
Nominal force	max. 4500 N					
Travel	50 mm					
Enclosure	IP 65					
Process medium max. temperature	+5 to $150{ }^{\circ} \mathrm{C}$					
Ambient temperature range	-10 to $60{ }^{\circ} \mathrm{C}$					
Ambient humidity range	5 ... 95 \%					
Weight	8 kg without accessories / 8,4 kg with PSCP					

[^2]Dimensions

DN	Dimensions [mm]					
	A	B	C	D	H	
$\mathbf{1 5 - 8 0}$	487	185	114	96	20	
$\mathbf{1 0 0 - 1 5 0}$	511	209	118	116	40	

Accessories (optional)

2 position signal switches, mechanical 2WE
2 position signal switches, gold 2WE Gold
Integrated PI(D) regulator PSIC
Electric equipment for fail-safe function PSCP
Profibus DP interface
Local control PSC. 2
Heating resistor HR

Electric actuators

PS AUTOMATION

PSF401, PSF402 PSF402.1, PSF-M402

Type	PSF401			PSF402		
Suitable for valves	RV 113 R, M					
Voltage	AC 230 V	AC 24 V	DC 24 V	AC 230 V	AC 24 V	DC 24 V
Frequency	$50-60 \mathrm{~Hz}$					
Motor power	6 W	6 W	5 W	9 W	9 W	8 W
Rated / Maximal current	0,08 / 0,08 A	0,4/0,4 A	0,2/0,2 A	0,14 / 0,14 A	0,7/0,7A	0,35 / 0,35 A
Control	3-bodové; 0(2)-10 V; 0(4)-20 mA					
Running time Fail-safe action time	$0,3 \mathrm{~mm} / \mathrm{s}$					
Fail-safe function	execution SE - the spring pulls the stem out of the actuator execution SR - the spring pushes the stem into the actuator					
Nominal force	1000 N			2000 N		
Travel	5 to 40 mm					
Enclosure	IP 65					
Process medium max. temperature	+5 to $150{ }^{\circ} \mathrm{C}$					
Ambient temperature range	-10 to $60^{\circ} \mathrm{C}$					
Ambient humidity range	5 ... 95%					
Weight	$5,6 \mathrm{~kg}$ without accessories					
	PSF402.1			PSF-M402		
Suitable for valves	RV 113 R, M					
Voltage	AC 230 V	AC 24 V	DC 24 V	AC 230 V	AC 24 V	DC 24 V
Frequency	$50-60 \mathrm{~Hz}$					
Motor power	15 W	15 W	13 W	12 W	12 W	10 W
Rated / Maximal current	0,25 / 0,25 A	1,1/1,1 A	0,55 / 0,55 A	0,2 / 0,2 A	0,9/0,9 A	0,45 / 0,45 A
Control	3-position; 0(2)-10 V; 0(4)-20 mA					
Running time	$0,9 \mathrm{~mm} / \mathrm{s}+/-10 \%$			ajustable value		
Fail-safe action time	$1,1 \mathrm{~mm} / \mathrm{s}$			0,6 / 0,9 / 1,2 mm/s		
Fail-safe function	execution SE - the spring pulls the stem out of the actuator execution $S R$ - the spring pushes the stem into the actuator			hand wheel		
Nominal force	2 kN					
Travel	5 to 40 mm					
Enclosure	IP 65					
Process medium max. temperature	+5 to $150^{\circ} \mathrm{C}$					
Ambient temperature range	-10 to $60{ }^{\circ} \mathrm{C}$			-20 to $60{ }^{\circ} \mathrm{C}$		
Ambient humidity range	$5 . . .95 \%$					
Weight	5,6 kg without accessories			5,1 kg without accessories		

\rightarrow The specification and technical data are informative. Detailed and latest info you can find on www.ps-automation.com

Dimensions

DN	Dimensions [mm]			
	A	B	D	H
$\mathbf{1 5 - 8 0}$	319	189	76	20
$\mathbf{1 0 0 - 1 5 0}$	319	189	76	40

Accessories (optional)

2 position signal switches, mechanical 2WE
2 position signal switches, gold 2WE Gold
Integrated PI(D) regulator PSIC
Electric equipment for fail-safe function PSCP
Profibus DP interface
Local control PSC. 2
Heating resistor HR

LDM, spol. s r.o. Litomyšlská 1378 56002 Česká Třebová Czech Republic
tel.: +420465502511
fax: +420 465533101
e-mail: sale@ldm.cz

LDM Bratislava s.r.o.
Mierová 151
82105 Bratislava
Slovakia
tel.: +421 2 43415027-8
fax: +421243415029
e-mail: Idm@ldm.sk

LDM, spol. s r.o. Office Prague
Podolská 50 14701 Praha 4 Czech Republic
tel.: +420 241087360 fax: +420 241087192 e-mail: sale@ldm.cz

LDM, Polska Sp. z o.o.
ul. Bednorza 1 40384 Katowice Poland
tel.: +48 327305633 fax: +48 327305233 mobile: +48 601354999 e-mail: Idmpolska@ldm.cz

LDM, spol. s r.o.
Office Ústí nad Labem
Ladova 2548/38
40011 Ústí nad Labem

- Severní Terasa

Czech Republic
tel.: +420 602708257 e-mail: sale@ldm.cz

LDM servis, spol. s r.o. Litomyšlská 1378 56002 Česká Třebová Czech Republic
tel.: +420 465502 411-3
fax: +420 465531010
e-mail: servis@ldm.cz

000 "LDM Promarmatura" Jubilejniy prospekt,
dom.6a, of. 601
141400 Khimki Moscow Region Russia
tel.: +74957772238
fax: +74956662212
mobile: +79032254333
e-mail: inforus@ldmvalves.com

TOO "LDM" Shakirova 33/1 kab. 103
100012 Karaganda Kazakhstan
tel.: +7 7212566936 fax: +77212 566936 mobile: +77017383679 e-mail: sale@ldm.kz

LDM Armaturen GmbH
Wupperweg 21
D-51789 Lindlar Germany
tel.: +49 2266440333
fax: +49 2266440372
mobile: +49 1772960469
e-mail: Idmarmaturen@ldmvalves.com

www.ldmvalves.com

LDM reserves the right to modify or improve the designs or specifications of such products at any time without notice.

[^0]: Order example: RV113 R 4331 16/150-065
 The actuator must be specified separately.

[^1]: Y1 actuator
 N1 regulator
 F1 safety thermostat
 F2 anti-freeze thermostat
 clutches: 1-3 the risk of freezing / contact is open
 (contact switched by frost)
 1-2 normal operation
 F3 temperature idicator
 F4 anti-freeze monitor with output $0 \ldots 1000 \Omega$,
 for example: QAF21.. or QAF61.. (only for SKD62UA) *
 G (SP) system potential AC 24 V
 G0 (SN) system zero

 * Only for sequential control and appropriate switch settings

[^2]: \rightarrow The specification and technical data are informative. Detailed and latest info you can find on www.ps-automation.com

