

РУКОВОДСТВО ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ

ТРЕХХОДОВЫЕ РЕГУЛИРОВОЧНЫЕ ВЕНТИЛИ DN 15 - 40 PN 6 DN 15 - 150 PN 16, 25

RV 113 M, S

PM - 085/15/06/RUS

Указания по монтажу и уходу за вентилями типового ряда RV 113 M, S обязательны для пользователя, чтобы возможно было обеспечить правильную функцию вентилей. В течение ухода, на монтаже, демонтаже и в течение эксплуатации пользователь обязан соблюдать принципы, содержащиеся в настоящем документе.

1. ТЕХНИЧЕСКОЕ ОПИСАНИЕ И НАЗНАЧЕНИЕ АРМАТУРЫ

1.1 Описание

Регулировочные вентили RV 113 M - это фланцевые трехходовые арматуры, со смесительной или разделительной функцией с высокой плотностью (тип M - в обуих ветвях, тип S - только в прямой ветви) предназначенные для регулирования и перекрытия потока среды, как напр. вода, воздух или другие среды, совместимые с материалом корпуса и внутренних частей арматуры в диапазоне +2 до $+150^{\circ}$ C. Они не являются для пары и паровой конденсат. Вентили поставляются в исполнении серый чугун или высокопрочный чугун, внутренние части из стали, стойкой к коррозии; проточные характеристики, Kvs коэффициенты и неплотность отвечают требованиям международных стандартов.

Исполнение вентилей ряда RV 113 М приспособлено для подключения эл. двигателей приводов Siemens, Belimo, Ekorex и ЛДМ.

Исполнение вентилей ряда RV 113 S приспособлено для подключения электрогидравлич. двигателей приводов Siemens.

1.2 Назначение

Вентили предназначены для применения в области систем отопления и кондиционирования воздуха.

Клапаны производятся тоже в испольнении без силикона, в типовом номере обозначено SF.

Эти клапаны предназначены для применения там, где не может произойти проникновение веществ, снижающих качество лака.

Для надежного функционирования арматуры изготовитель рекомендует установить в трубопроводе перед вентилем фильтр механических примесей.

Вентиль не должен работать в условиях с опасностью образования кавитации.

1.3 Функционирование

Регулировочные вентили RV 113 M, S имеют в прямой ветви конус с характеристикой LDMspline и в ветви угловой конус с линейной характеристикой. ∆р вентилей не должен превысить значение 1.6 МПа.

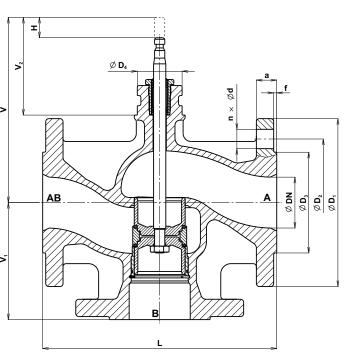
Примененные электрические приводы в зависимости от исполнения позволяют трехточечное или непрерывное управление. Они могут быть дополнительно укомплектованы сигнализацией конечных положений и резистивным датчиком положения.

1.4 Технические параметры

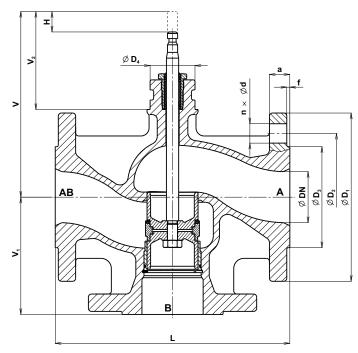
Конструктивный ряд	RV 113 M, S								
Исполнение	Трехходовые регулиров	вочные вентили							
Диапазон приходов	DN 15 - 150								
Номинальное давление	DN 15 - 40 PN 6 DN 15 -150 PN 16	DN 15 - 150 PN 25							
Материал корпуса	Серый чугун EN-JL 1040	Высокопрочный чугун EN-JS 1025							
Материал конуса	Нержавеющая сталь 1	.4027 (1.4028)							
Материал тяги	Нержавеющая сталь 1.4305								
Уплотнение в седле	EPDM								
Прокладка сальника	EPDM								
Диапазон рабочих температур	+2 до +150°C								
Присоединение	Фланца типа Б1 (грубый уплотнитель) по EN 1092-2 (04/2002)								
Строительные длины	Ряд 1 по EN 558 (09/2008)								
Тип конуса	Цилиндрическая с прорези и мя	ігкое уплотнение в седле							
Характеристика потока	Прямой ветви конус с харак. LDMspline [®] ,	в ветви угловой конус с линейной							
Значения Kvs	0,63 до 360 m³/hod								
Неплотность	Класс IV S1 по EN 1349 (05/2001) (<0.0005 % Kvs) RV 113 S: в углевой ветке не гарантируется (<2% Kvs)								
Отношение регулирования	50:1								

2. ИНСТРУКЦИЯ ПО МОНТАЖУ И ОБСЛУЖИВАНИЮ АРМАТУРЫ

2.1 Подготовка до начала монтажа


Вентили поставляются с заводапроизводителя комплектно собранными, отрегулированными и испытанными. До собственно монтажа в трубопровод нужно сопоставить данные на заводской табличке с данными в сопроводительной документации. Помимо вышесказанного вентили нужно осмотреть на отсутствие механического повреждения или загрязнение; внимание нужно уделить внутренним полостям и уплотняющим планкам. Из трубопроводной системы нужно устранить жесткие примеси, которые могли бы в течение эксплуатации вызвать повреждение уплотняющих поверхностей.

2.2 Размеры и вес клапанов RV 113 M, S


	PN 6					PN 16						PN 25									
DN	D₁	D ₂	D₃	d	n	а	m	D ₁	D ₂	D ₃	d	n	а	m	D ₁	D ₂	D ₃	d	n	а	m
	ММ	ММ	ММ	ММ	ММ	ММ	КГ	ММ	ММ	ММ	MM	ММ	ММ	КГ	ММ	ММ	ММ	ММ	ММ	MM	КГ
15	80	55	38	11	4	12	2.6	95	65	46	14	4	14	3.5	95	65	46	14	4	14	3.5
20	90	65	48	11	4	14	3.5	105	75	56	14	4	16	4.6	105	75	56	14	4	16	4.6
25	100	75	58	11	4	14	4.1	115	85	65	14	4	16	5.4	115	85	65	14	4	16	5.4
32	120	90	69	14	4	16	6.3	140	100	76	19	4	18	8.5	140	100	76	19	4	18	8.5
40	130	100	78	14	4	16	7.9	150	110	84	19	4	18	10.5	150	110	84	19	4	18	10.5
50								165	125	99	19	4	20	13.0	165	125	99	19	4	20	13.0
65								185	145	118	19	4	20	18.3	185	145	118	19	8	20	18.3
80								200	160	132	19	8	22	24.1	200	160	132	19	8	22	24.1
100								220	180	156	19	8	24	33.8	235	190	156	23	8	19	33.1
125								250	210	184	19	8	26	49.3	270	220	184	28	8	19	46.9
150								285	240	211	23	8	26	69.3	300	250	211	28	8	20	66.7

	PN 6, 16, 25											
DN	f	D_4	L	V	V ₁	V ₂	Н					
	ММ	ММ	ММ	ММ	ММ	ММ	ММ					
15	2	44	130	167	65	96	20					
20	2	44	150	167	75	96	20					
25	3	44	160	167	80	96	20					
32	3	44	180	177	90	96	20					
40	3	44	200	187	100	96	20					
50	3	44	230	182	115	96	20					
65	3	44	290	192	145	96	20					
80	3	44	310	212	155	96	20					
100	3	44	350	247	175	116	40					
125	3	44	400	272	200	116	40					
150	3	44	480	297	240	116	40					

RV 113 M

RV 113 S

PM - 085/15/06/R_RV 113 M, S 2/6

2.3 Установка вентиля в трубопровод

Вентиль должен быть установлен в трубопровод всегда таким способом, чтобы направление движения среды соответствовало стрелке на корпусе (входы A,B и выход AB). В случае распределительного вентиля направление потока противоположное (вход AB и выходы A,B). Вентиль можно устанавливать в любом положении за исключением положения, когда привод находится под вентилем. В случае вентилей, работающих при более высоких температурах, привод должен быть защищен от лучистого тепла (напр. отклонением от вертикального положения) и трубопровод должен быть как следует изолирован. Если вентиль установлен в вертикальном трубопроводе или в горизонтальном трубопроводе с приводом, расположенным в горизонтальной позиции, то привод придется подходящим способом подопреть или анкеровать.

Для правильного функционирования регулировочного вентиля необходимо соблюдать следующие указания:

- при монтаже необходимо следить за тем, чтобы были исключены все усилия от трубопровода;
- для обеспечения качественного регулирования вентиль не следует устанавливать непосредственно за угольником и рекомендуется, чтобы длина ровного (прямого) участка трубопровода перед вентилем и за ним составляла не менее чем 6x DN;
- для облегчения демонтажа или ремонта целесообразно оставить над вентилем и под ним достаточное место для манипуляции,
- собственно монтаж нужно проводить тщательно, с попеременным подтягиванием фланцевых винтов так, чтобы предотвратить внутреннее напряжение. Необходимо, чтобы фланцы трубопровода были соосными по отношению к фланцам вентиля.

2.3.1 Присоединение электрического и электрогидравлического привода

Данные работы может проводить лишь профессионально обученное лицо. Необходимо соблюдать все правила техники безопасности, распространяющиеся на электрические машины. Кроме того, необходимо руководствоваться инструкцией по монтажу и инструкцией по эксплуатации, техническому обслуживанию и содержанию электрических приводов, изданными изготовителем приводов. Резистивный датчик положения и сигнальные выключатели, если они входят в объем поставки, установлены под кожухом привода.

Так как вентиль поставляется заводомизготовителем как одно целое с приводом, то уже выполнена основная регулировка (настройка) привода. В обоих конечных положениях отрегулировано выключение моментным (мгновенным) или силовым выключателем. Если при установке вентиля в трубопровод или по любой другой причине будет привод снят с вентиля, то после обратного монтажа придется настройку проверить и в случае необходимости выполнить новую регулировку привода. Изготовитель не несет никакой ответственности за ущерб, возникший в результате неправильно отрегулированного привода. В случае необходимости можно попросить, чтобы эти работы выполнила сервисная организация изготовителя.

Длины кабелей к приводу нужно принимать такими, чтобы привод возможно было снять с вентиля без отсоединения кабелей от коробки зажимов привода.

Примечание: В случае обслуживания арматуры с ручным маховиком или электроприводом необходимо внимательно смотреть на механический показатель положения ОТКРЫТО/ЗАКРЫТО размещенный на клапане, или прямо на электроприводе и уделять особое внимание на положение концевых выключателей.

При обслуживании арматуры с ручным маховиком и электроприводом необходимо убедиться, что электрические выключатели не функционируюут.В противном случае это может привести к повреждению артматуру или привод.

Строго запрещено при обслуживании арматуры с ручным маховиком использовать вспомогательные механические инструменты.

2.3.2 Проверка после монтажа

После монтажа в системе трубопровода нужно создать давление и проверить, не имеют ли место утечки (неплотность). Необходимо проверить плотность сальника. Помимо вышесказанного нужно проверить функционирование привода и выполнить несколько контрольных ходов (подъемов).

2.4 Обслуживание, техническое обслуживание и содержание

2.4.1 Сальник

Вентили укомплектованы О-кольцами EPDM, сальник не нуждается в уходе и винт сальника не должен ни подтягиваться, ни ослабляться. В случае неплотности О-кольца необходимо заменить.

2.4.2 Замена сальника

Если ввиду недостаточной плотности О-кольца необходимо заменить, то сперва нужно снять привод и вывинтить винт сальника. **При замене сальника в трубопроводе не должно быть давления.** После удаления винта сальника необходимо проверить состояние поверхности тяги и очистить внутреннее пространство. Если уплотнительные поверхности повреждены или нарушены, дефектные части необходимо заменить. Особое внимание следует уделять поверхности тяги, проходящей сквозь сальник, недостаточное качество которой может вызвать существенное ограничение срока службы сальника. О-кольца нужно смазать специальной смазкой, рекомендуемой производителем. **Во время эксплуатации тягу не следует смазывать!**

После замены прокладки сальника необходимо прочно подтянуть винт сальника, вплоть до дна пространства сальника.

После монтажа привода целесообразно выполнить проверку см. п. 2.3.2.

2.4.3 Замена конуса и седла

В случае эксплуатации вентиля при больших перепадах давления или при высокой степени загрязнения протекающей среды вполне вероятно, что произойдет износ регулирующей и уплотнительной поверхностей конуса и седла. Дефект проявляется потерей плотности вентиля при закрытии. В таком случае необходимо обеспечить профессиональное сервисное вмешательство.

2.4.4 Электрические приводы

Электрические приводы не нуждаются в специальном уходе и обслуживании. Необходимо, однако, соблюдать указания, приведенные в инструкции по монтажу, изданной изготовителем приводов. При обнаружении дефекта следует руководствоваться инструкцией по монтажу или вызвать профессиональную сервисную службу.

2.5 Устранение дефектов и неисправностей

В случае обнаружения неисправности, дефекта на арматуре (неплотность при закрытии, неплотность сальника или крышки и т.д.) необходимо немедленно обеспечить его устранение, иначе может произойти необратимое повреждение уплотняющих поверхностей и частей, подверженных воздействию просачивающейся среды.

2.5.1 Большая неплотность затвора

Большая неплотность затвора может быть вызвана:

- 1. работой вентиля при перепаде давления Δ ртакс, который выше допустимого,
- 2. недостаточным прижимным усилием привода. В данном случае необходимо проверить функционирование привода,
- 3. нарушением уплотнительных поверхностей прилегания конуса и седла. В данном случае для любого вмешательства необходимо вызвать профессиональную сервисную службу изготовителя.

2.5.2 Неплотность сальника

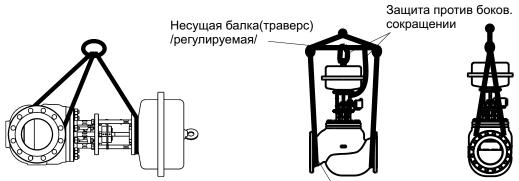
В случае неплотности сальника необходимо действовать согласно пп. 2.4.2 или обеспечить профессиональное сервисное вмешательство.

2.6 Запасные части

Запасные части не входят в объем поставки вентилей и должны заказываться отдельно. Заказывая запасные части, в заказе необходимо указать наименование части, тип вентиля, номинальный проход DN и заводской номер вентиля.

2.7 Условия гарантии

Изготовитель предоставляет гарантию на изделие продолжительностью 24 месяца с дата отгрузки. В случае признания гарантии обоснованной, то изготовитель возмещает стоимость ремонта или замены изделия и его транспортировки обратно к заказчику. Если заказчик попросит проведения сервисного вмешательства прямо на месте установки изделия, он оплачивает необходимые затраты на проезд. Если гарантия не признана обоснованной, заказчик возмещает все возникшие расходы.


Изготовитель не гарантирует работу, надежность и безопасность изделия при других чем указанных в настоящей инструкции по монтажу, техническому обслуживанию и уходу и в соответствующем листе каталога условиях. Любое применение изделия при других условиях необходимо проконсультировать с изготовителем.

Дефекты вентиля, возникшие в результате воздействия присутствующих в агенте примесей и грязи, не считаются гарантийными. Производитель не отвечает за продукт, если пользователь выполнил на нем любую переделку без предварительного письменного согласия производителя (за исключением подтяжки сальника).

2.8 Транспортировка и хранение

В течение транспортировки и хранения вентили не должны быть подвержены прямому воздействию воды и должны быть установлены в среде, где относительная влажность воздуха не превысит 90%.

С учетом используемых приводов температура в течение транспортировки и хранения должна колебаться в диапазоне -20 до 55°C. Входные фланцы должны быть защищены колпачками (входящими в состав поставки). Для подъема клапанов при их упаковке, погрузке и выгрузке, а также при манипулировании ими на месте установки должны использоваться подходящие для этого такелажные элементы например: такелажные подпруги (лямки). Эти подпруги (лямки) необходимо обмотать вокруг фланцев клапана, а также вокруг хомута или кожуха привода. У пневматических приводов можно использовать винт с проушиной, расположенный на верхней стороне привода. Арматуру никогда нельзя поднимать лишь за привод!

Необходимо использовать щиток лямок (ременов) против резкой кромке.

Пример использования такелажных средств при манипулировании с устройством

PM - 085/15/06/R RV 113 M, S

Нужно следить за тем, чтобы арматура в течение транспортировки и перегрузочных операций не повредилась. Особое внимание придется уделить тяге вентиля, указателю хода и периферийным принадлежностям, прикрепленным к приводу.

Если при соблюдении вышеприведенных условий вентили хранятся дольше чем 3 года, то производитель рекомендует выполнить профессиональную проверку еще до применения продукта.

2.9 Ликвидация отходов

Упаковочный материал и старые уже не применяющиеся арматуры ликвидируются общепринятым способом, напр. передачей специализированной организации на ликвидацию (корпусы и металлические части скрап, тара + остальные неметаллические части коммунальные отходы).

Максим. допустимые рабочие давления по EN 1092-2 [МПа]

Материал	PN		Температура [°C]									
		100	120	150	200	250	300	350	400	450	500	
EN-JL 1040	6	0.60	0.60	0.54								
(EN-GJL-250)	16	1.60	1.60	1.44								
EN-JS 1025 (EN-GJS-400-18)	25	2.50	2.50	2.43								

Схема составления полного типового номера клапанов RV 113 M, S

		XX	XXX	Χ	XX	XX	XX	/ XXX	- XXX	XX
1. Клапан	Регулирующий клапан	RV								
2. Обозначение типа	Клапаны из чугуна		113							
3. Функция	Трехходовый регулировочный клапан			М						
	Трехходов. рег. клапан для эл.гидрав. прив.			S						
4. Исполнение	Фланцевое, трехходовые смесительное (распределительное)				6					
5. Материал корпуса	Серый чугун				3					
	Высокопрочный чугун				4					
6. Характерис. потока	LDMspline [®]					3				
7. Kvs	Для таблици Kvs					Х				
8. Ном. давление PN	PN 6 (только серый чугун) DN15 до 40						06			
	PN 16						16			
	PN 25 (только высокопрочный чугун)						25			
9. Макс. температура °С	150°C							150		
10. Диап. приходов DN	DN 15 до 150								XXX	
11. Исполнение	Нормальный									
	Без силикона									SF

Пример заказа: RV113 M 6331-16/150-065

Привод должен быть определен отдельно по каталожному листу.

АДРЕС ЗАВОДА - ИЗГАТОВИТЕЛЯ

LDM, spol. s r.o. Litomyšlská 1378 560 02 Česká Třebová Czech Republic

tel.: +420 465 502 511 fax: +420 465 533 101 E-mail: sale@ldm.cz http://www.ldmvalves.com

РЕГИОНАЛЬНЫЕ ОФИСЫ

LDM, spol. s r.o. Office in Prague Podolská 50 147 01 Praha 4 Czech Republic

tel.: +420 241087360 fax: +420 241087192 E-mail: sale@ldm.cz LDM, spol. s r.o. Office in Ústí nad Labem Ladova 2548/38 400 11 Ústí nad Labem - Severní Terasa Czech Republic

tel.: +420 602708257 E-mail: sale@ldm.cz

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

LDM servis, spol. s r.o. Litomyšlská 1378 560 02 Česká Třebová Czech Republic

tel: +420 465502411-13 fax: +420 465531010 E-mail: servis@ldm.cz

ЗАРУБЕЖНЫЕ ФИЛИАЛЫ

OOO "LDM Promarmatura"
Jubilejniy prospekt, dom.6a, of. 601
141407 Khimki
Moscow Region
Russia

tel.: +7 495 7772238 fax: +7 495 7772238 mobile: +7 9032254333 e-mail: inforus@ldmvalves.com

TOO "LDM" Shakirova 33/1, kab. 103 100012 Karaganda Kazachstan

tel.: +7 7212566936 fax: +7 7212566936 mobile: +7 7017383679 e-mail: sale@ldm.kz LDM, Bratislava s.r.o. Mierová 151 821 05 Bratislava Slovakia

tel: +421 243415027-8 fax: +421 243415029 E-mail: ldm@ldm.sk http://www.ldm.sk

LDM Armaturen GmbH Wupperweg 21 D-51789 Lindlar Deutschland

tel: +49 2266 440333 fax: +49 2266 440372 mobile: +49 1772960469

E-mail: ldmarmaturen@ldmvalves.com

LDM, Polska Sp. z o.o. ul. Bednorza 1 40-384 Katowice Polska

tel: +48 327305633 fax: +48 327305233 mobile: +48 601354999 E-mail: ldmpolska@ldm.cz

LDM Bulgaria Ltd. z.k.Mladost 1 bl.42, floor 12, app.57 1784 Sofia Bulgaria

tel: +359 2 9746311 fax: +359 2 8771344 mobile: +359 888925766 E-mail: ldm.bg@ldmvalves.com

www.ldmvalves.com

LDM, spol. s r.o. оставляет за собой право изменять свои изделия и спецификации без предварительного предупреждения ЛДМ обслуживает и после гарант. срока